Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cell Rep ; 39(7): 110812, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35568025

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody. LY-CoV1404 potently neutralizes authentic SARS-CoV-2, B.1.1.7, B.1.351, and B.1.617.2. In pseudovirus neutralization studies, LY-CoV1404 potently neutralizes variants, including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved, except for N439 and N501. The binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The broad and potent neutralization activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales , Epítopos , Humanos
2.
bioRxiv ; 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33972947

RESUMEN

SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization when administered early during COVID-19 disease. However, the emergence of variants of concern has negatively impacted the therapeutic use of some authorized mAbs. Using a high throughput B-cell screening pipeline, we isolated a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody called LY-CoV1404 (also known as bebtelovimab). LY-CoV1404 potently neutralizes authentic SARS-CoV-2 virus, including the prototype, B.1.1.7, B.1.351 and B.1.617.2). In pseudovirus neutralization studies, LY-CoV1404 retains potent neutralizing activity against numerous variants including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant and retains binding to spike proteins with a variety of underlying RBD mutations including K417N, L452R, E484K, and N501Y. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved with the exception of N439 and N501. Notably, the binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The breadth of reactivity to amino acid substitutions present among current VOC together with broad and potent neutralizing activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants causing COVID-19. In Brief: LY-CoV1404 is a potent SARS-CoV-2-binding antibody that neutralizes all known variants of concern and whose epitope is rarely mutated. Highlights: LY-CoV1404 potently neutralizes SARS-CoV-2 authentic virus and known variants of concern including the B.1.1.529 (Omicron), the BA.2 Omicron subvariant, and B.1.617.2 (Delta) variantsNo loss of potency against currently circulating variantsBinding epitope on RBD of SARS-CoV-2 is rarely mutated in GISAID databaseBreadth of neutralizing activity and potency supports clinical development.

3.
Cancers (Basel) ; 13(5)2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33804482

RESUMEN

CD200/CD200R is an immune checkpoint with broad expression patterns and a potential target for immune therapy. In this study, we assess both CD200 and CD200R expression in solid tumors, with a focus on lung cancer, and evaluate their association with clinicopathologic characteristics, mutation status, outcome, and programmed death-ligand 1 (PD-L1) expression. We used multiplexed quantitative immunofluorescence (QIF) to measure the expression of CD200 and CD200R in a total of 455 patients from three lung cancer cohorts. Using carefully validated antibodies, we performed target measurement with tyramide-based QIF panels and analyzed the data using the PM2000 microscope and AQUA software. CD200 tumor positivity was found in 29.7% of non-small cell lung cancer (NSCLC) patients and 33.3% of lung large cell neuroendocrine carcinoma (LCNEC) patients. CD200 demonstrated notable intratumoral heterogeneity. CD200R was expressed in immune cells in 25% of NSCLC and 41.3% of LCNEC patients. While CD200R is predominantly expressed in immune cells, rare tumor cell staining was seen in a highly heterogeneous pattern. CD200R expression in the stromal compartment was significantly higher in patients with squamous differentiation (p < 0.0001). Neither CD200 nor CD200R were associated with other clinicopathologic characteristics or mutation status. Both biomarkers were not prognostic for disease-free or overall survival in NSCLC. CD200 showed moderate correlation with PD-L1. CD200/CD200R pathway is frequently expressed in lung cancer patients. Differential expression patterns of CD200 and CD200R with PD-L1 suggest a potential role for targeting this pathway alone in patients with NSCLC.

4.
J Biol Chem ; 280(50): 41494-503, 2005 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-16221669

RESUMEN

HuCC49 deltaCH2 is a heavy chain constant domain 2 domain-deleted antibody under development as a radioimmunotherapeutic for treating carcinomas overexpressing the TAG-72 tumor antigen. Mammalian cell culture biosynthesis of HuCC49 deltaCH2 produces two isoforms (form A and form B) in an approximate 1:1 ratio, and consequently separation and purification of the desired form A isoform adversely impact process and yield. A protein engineering strategy was used to develop a panel of hinge-engineered HuCC49 deltaCH2 antibodies to identify hinge sequences to optimize production of the form A isoform. We found that adding a single proline residue at Kabat position 243, immediately adjacent to the carboxyl end of the core middle hinge CPPC domain, resulted in an increase from 39 to 51% form A isoform relative to the parent HuCC49 deltaCH2 antibody. Insertion of the amino acids proline-alanine-proline (PAP) at positions 243-245 enhanced production of the form A isoform to 72%. Insertion of a cysteine-rich 15-amino acid IgG3 hinge motif (CPEPKSCDTPPPCPR) in both of these mutant antibodies resulted in secretion of predominantly form A isoform with little or no detectable form B. Yields exceeding 98% of the form A isoform have been realized. Preliminary peptide mapping and mass spectrometry analysis suggest that at least two, and as many as five, inter-heavy chain disulfide linkages may be present.


Asunto(s)
Ingeniería de Proteínas/métodos , Radioinmunoterapia/métodos , Secuencias de Aminoácidos , Animales , Anticuerpos/química , Anticuerpos Monoclonales/química , Anticuerpos Antineoplásicos/química , Unión Competitiva , Western Blotting , Células CHO , Bovinos , Cricetinae , Disulfuros/química , Electroforesis en Gel de Poliacrilamida , Vectores Genéticos , Hipoxia , Inmunohistoquímica , Espectrometría de Masas , Modelos Biológicos , Modelos Moleculares , Mucinas/química , Mutación , Oligonucleótidos/química , Mapeo Peptídico , Péptidos/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica , Isoformas de Proteínas , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA