Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 767
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(5): 895-914.e27, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142680

RESUMEN

A safe and controlled manipulation of endocytosis in vivo may have disruptive therapeutic potential. Here, we demonstrate that the anti-emetic/anti-psychotic prochlorperazine can be repurposed to reversibly inhibit the in vivo endocytosis of membrane proteins targeted by therapeutic monoclonal antibodies, as directly demonstrated by our human tumor ex vivo assay. Temporary endocytosis inhibition results in enhanced target availability and improved efficiency of natural killer cell-mediated antibody-dependent cellular cytotoxicity (ADCC), a mediator of clinical responses induced by IgG1 antibodies, demonstrated here for cetuximab, trastuzumab, and avelumab. Extensive analysis of downstream signaling pathways ruled out on-target toxicities. By overcoming the heterogeneity of drug target availability that frequently characterizes poorly responsive or resistant tumors, clinical application of reversible endocytosis inhibition may considerably improve the clinical benefit of ADCC-mediating therapeutic antibodies.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Resistencia a Antineoplásicos/inmunología , Neoplasias/tratamiento farmacológico , Proclorperazina/farmacología , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Presentación de Antígeno/efectos de los fármacos , Biopsia , Cetuximab/farmacología , Sistemas de Liberación de Medicamentos/métodos , Resistencia a Antineoplásicos/genética , Endocitosis/efectos de los fármacos , Endocitosis/inmunología , Xenoinjertos , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Células MCF-7 , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Neoplasias/genética , Neoplasias/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Trastuzumab/farmacología
2.
Nat Rev Mol Cell Biol ; 22(8): 548-562, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33927361

RESUMEN

The cytoskeleton - comprising actin filaments, microtubules and intermediate filaments - serves instructive roles in regulating cell function and behaviour during development. However, a key challenge in cell and developmental biology is to dissect how these different structures function and interact in vivo to build complex tissues, with the ultimate aim to understand these processes in a mammalian organism. The preimplantation mouse embryo has emerged as a primary model system for tackling this challenge. Not only does the mouse embryo share many morphological similarities with the human embryo during its initial stages of life, it also permits the combination of genetic manipulations with live-imaging approaches to study cytoskeletal dynamics directly within an intact embryonic system. These advantages have led to the discovery of novel cytoskeletal structures and mechanisms controlling lineage specification, cell-cell communication and the establishment of the first forms of tissue architecture during development. Here we highlight the diverse organization and functions of each of the three cytoskeletal filaments during the key events that shape the early mammalian embryo, and discuss how they work together to perform key developmental tasks, including cell fate specification and morphogenesis of the blastocyst. Collectively, these findings are unveiling a new picture of how cells in the early embryo dynamically remodel their cytoskeleton with unique spatial and temporal precision to drive developmental processes in the rapidly changing in vivo environment.


Asunto(s)
Citoesqueleto/fisiología , Desarrollo Embrionario/fisiología , Animales , Blastocisto/citología , Blastocisto/metabolismo , Comunicación Celular , División Celular , Linaje de la Célula , Embrión de Mamíferos , Humanos , Morfogénesis
3.
Cell ; 173(3): 776-791.e17, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29576449

RESUMEN

Transformation from morula to blastocyst is a defining event of preimplantation embryo development. During this transition, the embryo must establish a paracellular permeability barrier to enable expansion of the blastocyst cavity. Here, using live imaging of mouse embryos, we reveal an actin-zippering mechanism driving this embryo sealing. Preceding blastocyst stage, a cortical F-actin ring assembles at the apical pole of the embryo's outer cells. The ring structure forms when cortical actin flows encounter a network of polar microtubules that exclude F-actin. Unlike stereotypical actin rings, the actin rings of the mouse embryo are not contractile, but instead, they expand to the cell-cell junctions. Here, they couple to the junctions by recruiting and stabilizing adherens and tight junction components. Coupling of the actin rings triggers localized myosin II accumulation, and it initiates a tension-dependent zippering mechanism along the junctions that is required to seal the embryo for blastocyst formation.


Asunto(s)
Actinas/química , Blastocisto/metabolismo , Microtúbulos/metabolismo , Miosina Tipo II/química , Animales , Comunicación Celular , Proteínas del Citoesqueleto/química , Embrión de Mamíferos , Desarrollo Embrionario , Femenino , Proteínas Fluorescentes Verdes , Imagenología Tridimensional , Ratones , Ratones Endogámicos C57BL , Mórula , ARN Interferente Pequeño/metabolismo , Uniones Estrechas
4.
Proc Natl Acad Sci U S A ; 121(10): e2319366121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422020

RESUMEN

Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Anciano , Humanos , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Envejecimiento/genética , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Pronóstico
5.
Development ; 150(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37746871

RESUMEN

The stem/progenitor cell pool is indispensable for the development, homeostasis and regeneration of the gastric epithelium, owing to its defining ability to self-renew whilst supplying the various functional epithelial lineages needed to digest food efficiently. A detailed understanding of the intricacies and complexities surrounding the behaviours and roles of these stem cells offers insights, not only into the physiology of gastric epithelial development and maintenance, but also into the pathological consequences following aberrations in stem cell regulation. Here, we provide an insightful synthesis of the existing knowledge on gastric epithelial stem cell biology, including the in vitro and in vivo experimental techniques that have advanced such studies. We highlight the contributions of stem/progenitor cells towards patterning the developing stomach, specification of the differentiated cell lineages and maintenance of the mature epithelium during homeostasis and following injury. Finally, we discuss gaps in our understanding and identify key research areas for future work.


Asunto(s)
Células Madre , Estómago , Homeostasis , Diferenciación Celular , Linaje de la Célula
6.
Nature ; 585(7825): 404-409, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32848249

RESUMEN

To implant in the uterus, the mammalian embryo first specifies two cell lineages: the pluripotent inner cell mass that forms the fetus, and the outer trophectoderm layer that forms the placenta1. In many organisms, asymmetrically inherited fate determinants drive lineage specification2, but this is not thought to be the case during early mammalian development. Here we show that intermediate filaments assembled by keratins function as asymmetrically inherited fate determinants in the mammalian embryo. Unlike F-actin or microtubules, keratins are the first major components of the cytoskeleton that display prominent cell-to-cell variability, triggered by heterogeneities in the BAF chromatin-remodelling complex. Live-embryo imaging shows that keratins become asymmetrically inherited by outer daughter cells during cell division, where they stabilize the cortex to promote apical polarization and YAP-dependent expression of CDX2, thereby specifying the first trophectoderm cells of the embryo. Together, our data reveal a mechanism by which cell-to-cell heterogeneities that appear before the segregation of the trophectoderm and the inner cell mass influence lineage fate, via differential keratin regulation, and identify an early function for intermediate filaments in development.


Asunto(s)
Linaje de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Queratinas/metabolismo , Actinas/metabolismo , Animales , División Celular , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Ectodermo/citología , Embrión de Mamíferos/embriología , Femenino , Humanos , Filamentos Intermedios/metabolismo , Ratones , Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Trofoblastos/citología
7.
EMBO J ; 40(21): e107277, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34558085

RESUMEN

The dorsal and ventral human telencephalons contain different neuronal subtypes, including glutamatergic, GABAergic, and cholinergic neurons, and how these neurons are generated during early development is not well understood. Using scRNA-seq and stringent validations, we reveal here a developmental roadmap for human telencephalic neurons. Both dorsal and ventral telencephalic radial glial cells (RGs) differentiate into neurons via dividing intermediate progenitor cells (IPCs_div) and early postmitotic neuroblasts (eNBs). The transcription factor ASCL1 plays a key role in promoting fate transition from RGs to IPCs_div in both regions. RGs from the regionalized neuroectoderm show heterogeneity, with restricted glutamatergic, GABAergic, and cholinergic differentiation potencies. During neurogenesis, IPCs_div gradually exit the cell cycle and branch into sister eNBs to generate distinct neuronal subtypes. Our findings highlight a general RGs-IPCs_div-eNBs developmental scheme for human telencephalic progenitors and support that the major neuronal fates of human telencephalon are predetermined during dorsoventral regionalization with neuronal diversity being further shaped during neurogenesis and neural circuit integration.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica , Neurogénesis/genética , Neuronas/metabolismo , Telencéfalo/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclo Celular/genética , Diferenciación Celular , Colina/metabolismo , Proteína Doblecortina/genética , Proteína Doblecortina/metabolismo , Feto , Ontología de Genes , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Ácido Glutámico/metabolismo , Humanos , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Anotación de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/clasificación , Neuronas/citología , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Transducción de Señal , Estatmina/genética , Estatmina/metabolismo , Telencéfalo/citología , Telencéfalo/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácido gamma-Aminobutírico/metabolismo
8.
J Biol Chem ; 299(6): 104814, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37178919

RESUMEN

Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma (LUAD) patients often respond to EGFR tyrosine kinase inhibitors (TKIs) initially but eventually develop resistance to TKIs. The switch of EGFR downstream signaling from TKI-sensitive to TKI-insensitive is a critical mechanism-driving resistance to TKIs. Identification of potential therapies to target EGFR effectively is a potential strategy to treat TKI-resistant LUADs. In this study, we developed a small molecule diarylheptanoid 35d, a curcumin derivative, that effectively suppressed EGFR protein expression, killed multiple TKI-resistant LUAD cells in vitro, and suppressed tumor growth of EGFR-mutant LUAD xenografts with variant TKI-resistant mechanisms including EGFR C797S mutations in vivo. Mechanically, 35d triggers heat shock protein 70-mediated lysosomal pathway through transcriptional activation of several components in the pathway, such as HSPA1B, to induce EGFR protein degradation. Interestingly, higher HSPA1B expression in LUAD tumors associated with longer survival of EGFR-mutant, TKI-treated patients, suggesting the role of HSPA1B on retarding TKI resistance and providing a rationale for combining 35d with EGFR TKIs. Our data showed that combination of 35d significantly inhibits tumor reprogression on osimertinib and prolongs mice survival. Overall, our results suggest 35d as a promising lead compound to suppress EGFR expression and provide important insights into the development of combination therapies for TKI-resistant LUADs, which could have translational potential for the treatment of this deadly disease.


Asunto(s)
Adenocarcinoma del Pulmón , Diarilheptanoides , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Línea Celular Tumoral , Diarilheptanoides/farmacología , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Lisosomas/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología
9.
J Am Chem Soc ; 146(19): 12883-12888, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709642

RESUMEN

Polyamides represent one class of materials that is important in modern society. Because of the numerous potential applications of polyamides in various fields, there is a high demand for new polyamide structures, which necessitates the development of new polymerization methods. Herein, we report a novel and efficient palladium-catalyzed hydroaminocarbonylative polymerization of dienes and diamines for the synthesis of cycloaliphatic polyamides. The method employs readily available starting materials, proceeds in an atom-economic manner, and creates a series of new functional polyamides in high yields and high molecular weights. In contrast with the traditional polyamides based on adipic acid, the cycloaliphatic polyamides have superior thermal resistance, higher glass-transition temperature, and better solubility in common organic solvents, thus probably featuring the merits of high-performance and good processability.

10.
J Med Virol ; 96(1): e29362, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180249

RESUMEN

Human papillomavirus (HPV) infection is a major cause of cervical cancer. Studies showed HPV carcinogenesis may be induced by oxidative stress affecting the host immune system. The objective of this study is to evaluate levels of four circulating oxidative stress biomarkers associated with the HPV infection, persistence, and cervical lesion status in women. The three serum biomarkers measuring oxidative damage to biomolecules (8-oxodG, 8-oxo-7,8-dihydro-2'-deoxyguanosine [8-oxodG] for DNA, 4-hydroxy-2-nonenal [4-HNE] for lipid, and protein carbonyl [PC] for protein) and one antioxidant (glutathione, GSH) collected from 38 women were evaluated. The PC levels were significantly higher for women with oncogenic HPV infection (p = 0.047) and persistence (p = 0.053) based on the unadjusted linear model. In particular, women with ≥3 oncogenic HPV types had a higher PC level than those without HPV infection (p = 0.041). Women with low-grade squamous intraepithelial lesions showed an elevated PC (p = 0.058). These trends remained similar after adjusting for age. The GSH levels were lower for women infected with ≥3 oncogenic HPV types based on age-adjusted results (p = 0.061). This study supported that serum PC was associated with HPV infection, persistence, and cervical lesions, so it can potentially be used to monitor HPV carcinogenesis. Further large-scale studies will be needed to confirm these findings.


Asunto(s)
Infecciones por Papillomavirus , Enfermedades de Transmisión Sexual , Femenino , Humanos , Infecciones por Papillomavirus/complicaciones , 8-Hidroxi-2'-Desoxicoguanosina , Biomarcadores , Carcinogénesis , Glutatión , Estrés Oxidativo , Genitales
11.
Cancer Cell Int ; 24(1): 113, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528591

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) are key regulators of the 6-methyladenosine (m6A) epigenetic modification, playing a role in the initiation and progression of tumors. However, the regulatory mechanisms in head and neck squamous cell carcinoma (HNSCC) remain elusive. In this study, we investigated the molecular regulatory mechanisms of the lncRNA RASAL2-AS1 in the occurrence and development of HNSCC tumors. METHODS: A bioinformatics analysis was conducted to analyze the expression level of RASAL2-AS1 in HNSCC and normal tissues. RASAL2-AS1 mRNA and protein levels were detected using RT-PCR and Western blotting. Wound healing, transwell assays, flow cytometry, M6A dot blot, and RNA immunoprecipitation experiments were conducted to explore the regulatory role of the RASAL2-AS1 and downstream targets METTL14/LIS1 signaling pathway in HNSCC. Immunohistochemical examination was conducted to evaluate the expression of METTL14 and LIS1 in HNSCC and normal tissues. A tumor xenograft model of BALB/c nude mice was established to assess the impact of RASAL2-AS1 on cell proliferation and growth. RESULTS: RASAL2-AS1 high expression in HNSCC and cells deteriorated with survival rates of HNSCC. RASAL2-AS1 overexpression in HNSCC accelerated cell migration, colony formation, cell proliferation, cell cycle in S stage, while RASAL2-AS1 knockdown in HNSC cells inhibited cell cycle in G1 stage. After silencing METTL14, the above effects induced by overexpression of the RASAL2-AS1 were reversed. RASAL2-AS1 overexpression prompted LIS1 expression, whereas RASAL2-AS1 silencing reduced LIS1 levels in HNSCC cells, which was confirmed by immunohistological staining. Results demonstrated elevated expression of METTL14 or LIS1 in tongue cancer tissues. Overexpression of RASAL2-AS1 promoted tumor weight and tumor volume, which was counteracted by pcDNA3.1 RASAL2-AS1 plus silencing METTL14 and METTL14 and LIS1 were significantly decreased. CONCLUSION: Our study highlights the functional importance of the LncRNA RASAL2-AS1 in HNSCC and might assist in the development of a prognostic stratification and therapeutic approach. Which regulates HNSCC with the dependence of m6a manner.

12.
Exp Dermatol ; 33(6): e15097, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38840370

RESUMEN

Surgical management of basal cell carcinoma (BCC) typically involves surgical excision with post-operative margin assessment using the bread-loafing technique; or gold-standard Mohs micrographic surgery (MMS), where margins are iteratively examined for residual cancer after tumour removal, with additional excisions performed upon detecting residual tumour at margins. There is limited sampling of resection margins with bread loafing, with detection of positive margins 44% of the time using 2 mm intervals. To resolve this, we have developed three-dimensional (3D) Tissue Imaging for: (1) complete examination of cancer margins and (2) detection of tumour proximity to nerves and blood vessels. 3D Tissue optical clearing with a light sheet imaging protocol was developed for margin assessment in two datasets assessed by two independent evaluators: (1) 48 samples from 29 patients with varied BCC subtypes, sizes and pigmentation levels; (2) 32 samples with matching Mohs' surgeon reading of tumour margins using two-dimensional haematoxylin & eosin-stained sections. The 3D Tissue Imaging protocol permits a complete examination of deeper and peripheral margins. Two independent evaluators achieved negative predictive values of 92.3% and 88.24% with 3D Tissue Imaging. Images obtained from 3D Tissue Imaging recapitulates histological features of BCC, such as nuclear crowding, palisading and retraction clefting and provides a 3D context for recognising normal skin adnexal structures. Concurrent immunofluorescence labelling of nerves and blood vessels allows visualisation of structures closer to tumour-positive regions, which may have a higher risk for neural and vascular infiltration. Together, this method provides more information in a 3D spatial context, enabling better cancer management by clinicians.


Asunto(s)
Carcinoma Basocelular , Imagenología Tridimensional , Márgenes de Escisión , Cirugía de Mohs , Neoplasias Cutáneas , Humanos , Carcinoma Basocelular/diagnóstico por imagen , Carcinoma Basocelular/cirugía , Carcinoma Basocelular/patología , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/cirugía , Neoplasias Cutáneas/patología
13.
J Magn Reson Imaging ; 59(5): 1593-1602, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37610209

RESUMEN

BACKGROUND: Identification of non-diabetic renal disease (NDRD) in patients with type 2 diabetes mellitus (T2DM) may help tailor treatment. Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) is a promising tool to evaluate renal function but its potential role in the clinical differentiation between diabetic nephropathy (DN) and NDRD remains unclear. PURPOSE: To investigate the added role of IVIM-DWI in the differential diagnosis between DN and NDRD in patients with T2DM. STUDY TYPE: Prospective. POPULATION: Sixty-three patients with T2DM (ages: 22-69 years, 17 females) confirmed by renal biopsy divided into two subgroups (28 DN and 35 NDRD). FIELD STRENGTH/SEQUENCE: 3 T/ T2 weighted imaging (T2WI), and intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI). ASSESSMENT: The parameters derived from IVIM-DWI (true diffusion coefficient [D], pseudo-diffusion coefficient [D*], and pseudo-diffusion fraction [f]) were calculated for the cortex and medulla, respectively. The clinical indexes related to renal function (eg cystatin C, etc.) and diabetes (eg diabetic retinopathy [DR], fasting blood glucose, etc.) were measured and calculated within 1 week before MRI scanning. The clinical model based on clinical indexes and the IVIM-based model based on IVIM parameters and clinical indexes were established and evaluated, respectively. STATISTICAL TESTS: Student's t-test; Mann-Whitney U test; Fisher's exact test; Chi-squared test; Intraclass correlation coefficient; Receiver operating characteristic analysis; Hosmer-Lemeshow test; DeLong's test. P < 0.05 was considered statistically significant. RESULTS: The cortex D*, DR, and cystatin C values were identified as independent predictors of NDRD in multivariable analysis. The IVIM-based model, comprising DR, cystatin C, and cortex D*, significantly outperformed the clinical model containing only DR, and cystatin C (AUC = 0.934, 0.845, respectively). DATA CONCLUSION: The IVIM parameters, especially the renal cortex D* value, might serve as novel indicators in the differential diagnosis between DN and NDRD in patients with T2DM. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Femenino , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Nefropatías Diabéticas/diagnóstico por imagen , Cistatina C , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Estudios Prospectivos , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Movimiento (Física)
14.
J Magn Reson Imaging ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738786

RESUMEN

BACKGROUND: Clear cell likelihood score (ccLS) is reliable for diagnosing small renal masses (SRMs). However, the diagnostic value of Clear cell likelihood score version 1.0 (ccLS v1.0) and v2.0 for common subtypes of SRMs might be a potential score extension. PURPOSE: To compare the diagnostic performance and interobserver agreement of ccLS v1.0 and v2.0 for characterizing five common subtypes of SRMs. STUDY TYPE: Retrospective. POPULATION: 797 patients (563 males, 234 females; mean age, 53 ± 12 years) with 867 histologically proven renal masses. FIELD STRENGTH/SEQUENCES: 3.0 and 1.5 T/T2 weighted imaging, T1 weighted imaging, diffusion-weighted imaging, a dual-echo chemical shift (in- and opposed-phase) T1 weighted imaging, multiphase dynamic contrast-enhanced imaging. ASSESSMENT: Six abdominal radiologists were trained in the ccLS algorithm and independently scored each SRM using ccLS v1.0 and v2.0, respectively. All SRMs had definite pathological results. The pooled area under curve (AUC), accuracy, sensitivity, and specificity were calculated to evaluate the diagnostic performance of ccLS v1.0 and v2.0 for characterizing common subtypes of SRMs. The average κ values were calculated to evaluate the interobserver agreement of the two scoring versions. STATISTICAL TESTS: Random-effects logistic regression; Receiver operating characteristic analysis; DeLong test; Weighted Kappa test; Z test. The statistical significance level was P < 0.05. RESULTS: The pooled AUCs of clear cell likelihood score version 2.0 (ccLS v2.0) were statistically superior to those of ccLS v1.0 for diagnosing clear cell renal cell carcinoma (ccRCC) (0.907 vs. 0.851), papillary renal cell carcinoma (pRCC) (0.926 vs. 0.888), renal oncocytoma (RO) (0.745 vs. 0.679), and angiomyolipoma without visible fat (AMLwvf) (0.826 vs. 0.766). Interobserver agreement for SRMs between ccLS v1.0 and v2.0 is comparable and was not statistically significant (P = 0.993). CONCLUSION: The diagnostic performance of ccLS v2.0 surpasses that of ccLS v1.0 for characterizing ccRCC, pRCC, RO, and AMLwvf. Especially, the standardized algorithm has optimal performance for ccRCC and pRCC. ccLS has potential as a supportive clinical tool. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 2.

15.
Analyst ; 149(3): 729-734, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38131397

RESUMEN

Nowadays, easy, convenient, and sensitive sensing strategies are still critical for organophosphorus pesticides in environmental water samples. Herein, a novel organophosphorus pesticide (OP) assay based on acetylcholinesterase (AChE) and a MnO2 nanosheet-mediated CRISPR/Cas12a reaction is reported. The single-strand DNA (ssDNA) activator of CRISPR/Cas12a was simply adsorbed on the MnO2 nanosheets as the nanoswitches of the assay. In the absence of target OPs, AChE hydrolyzed acetylcholine (ATCh) to thiocholine (TCh), which reduced the MnO2 nanosheets to Mn2+, resulting in the release of the activator followed by activation of the CRISPR/Cas12a system. The activated Cas12a thereafter nonspecifically cleaved the FAM/BHQ1-labeled ssDNA (FQ-reporter), producing a fluorescence signal. Upon the addition of target OPs, the hydrolysis of ATCh by AChE was inhibited owing to OPs combining with AChE, and thus effective quantification of OPs could be achieved by measuring the fluorescence changes of the system. As a proof of concept, dichlorvos (DDVP) was chosen as a model OP analyte to address the feasibility of the proposed method. Attributed to the excellent trans-cleavage activity of Cas12a, the fluorescent biosensor exhibits a satisfactory limit of detection (LOD) for DDVP at 0.135 ng mL-1. In addition, the excellent recoveries for the detection of DDVP in environmental water samples demonstrate the applicability of the proposed assay in real sample research.


Asunto(s)
Técnicas Biosensibles , Plaguicidas , Plaguicidas/análisis , Compuestos Organofosforados , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Sistemas CRISPR-Cas , Diclorvos , Agua , Compuestos de Manganeso , Óxidos , Acetilcolina , Técnicas Biosensibles/métodos
16.
Cereb Cortex ; 33(19): 10303-10321, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37642602

RESUMEN

Impairments in spatial navigation in humans can be preclinical signs of Alzheimer's disease. Therefore, cognitive tests that monitor deficits in spatial memory play a crucial role in evaluating animal models with early stage Alzheimer's disease. While Chinese tree shrews (Tupaia belangeri) possess many features suitable for Alzheimer's disease modeling, behavioral tests for assessing spatial cognition in this species are lacking. Here, we established reward-based paradigms using the radial-arm maze and cheeseboard maze for tree shrews, and tested spatial memory in a group of 12 adult males in both tasks, along with a control water maze test, before and after bilateral lesions to the hippocampus, the brain region essential for spatial navigation. Tree shrews memorized target positions during training, and task performance improved gradually until reaching a plateau in all 3 mazes. However, spatial learning was compromised post-lesion in the 2 newly developed tasks, whereas memory retrieval was impaired in the water maze task. These results indicate that the cheeseboard task effectively detects impairments in spatial memory and holds potential for monitoring progressive cognitive decline in aged or genetically modified tree shrews that develop Alzheimer's disease-like symptoms. This study may facilitate the utilization of tree shrew models in Alzheimer's disease research.


Asunto(s)
Enfermedad de Alzheimer , Tupaia , Humanos , Masculino , Animales , Adulto , Anciano , Tupaiidae , Memoria Espacial , Musarañas , Aprendizaje por Laberinto , Modelos Animales de Enfermedad
17.
J Cardiothorac Vasc Anesth ; 38(3): 802-819, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218651

RESUMEN

Vasoplegic syndrome is a relatively common complication that can happen during and after major adult cardiac surgery. It is associated with a higher rate of complications, including postoperative renal failure, longer duration of mechanical ventilation, and intensive care unit stay, as well as increased mortality. The underlying pathophysiology of vasoplegic syndrome is that of profound vascular hyporesponsiveness, and involves a complex interplay among inflammatory cytokines, cellular surface receptors, and nitric oxide (NO) production. The pharmacotherapy approaches for the treatment of vasoplegia include medications that increase vascular smooth muscle contraction via increasing cytosolic calcium in myocytes, reduce the vascular effects of NO and inflammation, and increase the biosynthesis of and vascular response to norepinephrine. Clinical trials have demonstrated the clinical efficacy of non-catecholamine pharmacologic agents in the treatment of vasoplegic syndrome. With an increase in their use today, it is important for clinicians to understand the adverse clinical outcomes and patient risk profiles associated with these agents, which will allow better-tailored medical therapy.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Vasoplejía , Adulto , Humanos , Vasoplejía/tratamiento farmacológico , Vasoplejía/etiología , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Norepinefrina/uso terapéutico , Resultado del Tratamiento , Enfermedad Iatrogénica
18.
J Infect Dis ; 228(10): 1385-1393, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37161924

RESUMEN

BACKGROUND: Most cervical cancers are directly linked to oncogenic or high-risk human papillomavirus (HR-HPV) infection. This study evaluates associations between diet quality and genital HPV infection in women. METHODS: This study included 10 543 women from the 2003-2016 National Health and Nutrition Examination Survey. The outcome was the genital HPV infection status (HPV-negative, low-risk [LR] HPV, and HR-HPV). Dietary quality was evaluated using the Healthy Eating Index (HEI), in which a higher score indicates a better diet quality. RESULTS: Women who did not consume total fruits (15.8%), whole fruits (27.5%), or green vegetables and beans (43%) had a significantly higher risk of HR-HPV infection than women who complied with the Dietary Guidelines for Americans (HR-HPV odds ratio = 1.76, 1.63, and 1.48 for a HEI score of 0 vs 5, respectively) after adjusting confounding factors. Similar results of these food components on LR-HPV infection were found. In addition, intake of whole grains and dairy was inversely associated with LR-HPV infection. CONCLUSIONS: This study showed that women who did not eat fruits, dark-green vegetables, and beans had a higher risk of genital HR-HPV infection. Intake of these food components is suggested for women to prevent HPV carcinogenesis.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , Infecciones por Papillomavirus/epidemiología , Virus del Papiloma Humano , Encuestas Nutricionales , Dieta
19.
Angew Chem Int Ed Engl ; 63(26): e202406226, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38618886

RESUMEN

In contrast to the kinetically favored outward isomerization-hydrocarbonylation of alkenes, the disfavored inward isomerization-hydrocarbonylation of alkenes remains an important challenge. Herein, we have developed a novel and effective palladium-catalyzed inward isomerization-hydroaminocarbonylation of unactivated alkenes and aniline hydrochlorides for the formation of synthetically valuable α-aryl carboxylic amides in high yields and high site-selectivities. The high efficiency of the reaction is attributed to a relay catalysis strategy, in which the Markovnikov-favored [PdH]-PtBu3 catalyst is responsible for inward isomerization, while the [PdH]-Ruphos catalyst is responsible for hydroaminocarbonylation of the resulting conjugated aryl alkenes. The reaction exhibits highly functional group tolerance and provides a new method for formal carbonylation of remote C(sp3)-H bond.

20.
J Cell Physiol ; 238(10): 2440-2450, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37682852

RESUMEN

The incidence of endometrial cancer has been rising in recent years. Gene mutation and high protein expression of ß-catenin are commonly detected in endometrioid endometrial cancer. ICG-001 is a ß-catenin inhibitor via blocking the complex formation of ß-catenin and cAMP response element-binding protein (CREB)-binding protein (CBP). This study aims to investigate the effect of ICG-001 on endometrial cancer inhibition. First, endometrial carcinoma patient-derived xenograft (PDX)-derived organoids and primary cells were used to verify the inhibiting ability of ICG-001 on endometrial cancer. Furthermore, endometrial cancer cell lines were used to investigate the anticancer mechanism of ICG-001. Using MTT assay and tumor spheroid formation assay, ICG-001 significantly reduced the cell viability of HEC-59 and HEC-1A cells. ICG-001 enhanced cisplatin-mediated cytotoxicity. ICG-001 decreased cancer stem cell sphere formation. ICG-001 decreased the protein expressions of CD44, hexokinase 2 (HK2), and cyclin A. ICG-001 lowered the cell cycle progression by flow cytometer analysis. Autophagy, but no apoptosis, was activated by ICG-001 in endometrial cancer cells. Autophagy inhibition by ATG5 silencing enhanced ICG-001-mediated suppression of cell viability, tumor spheroid formation, and protein expression of cyclin A and CD44. This study clarified the mechanism and revealed the clinical potential of ICG-001 against endometrial cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA