Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Plant J ; 116(6): 1784-1803, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37715981

RESUMEN

Tree growth and survival are dependent on their ability to perceive signals, integrate them, and trigger timely and fitted molecular and growth responses. While ectomycorrhizal symbiosis is a predominant tree-microbe interaction in forest ecosystems, little is known about how and to what extent it helps trees cope with environmental changes. We hypothesized that the presence of Laccaria bicolor influences abiotic cue perception by Populus trichocarpa and the ensuing signaling cascade. We submitted ectomycorrhizal or non-ectomycorrhizal P. trichocarpa cuttings to short-term cessation of watering or ozone fumigation to focus on signaling networks before the onset of any physiological damage. Poplar gene expression, metabolite levels, and hormone levels were measured in several organs (roots, leaves, mycorrhizas) and integrated into networks. We discriminated the signal responses modified or maintained by ectomycorrhization. Ectomycorrhizas buffered hormonal changes in response to short-term environmental variations systemically prepared the root system for further fungal colonization and alleviated part of the root abscisic acid (ABA) signaling. The presence of ectomycorrhizas in the roots also modified the leaf multi-omics landscape and ozone responses, most likely through rewiring of the molecular drivers of photosynthesis and the calcium signaling pathway. In conclusion, P. trichocarpa-L. bicolor symbiosis results in a systemic remodeling of the host's signaling networks in response to abiotic changes. In addition, ectomycorrhizal, hormonal, metabolic, and transcriptomic blueprints are maintained in response to abiotic cues, suggesting that ectomycorrhizas are less responsive than non-mycorrhizal roots to abiotic challenges.


Asunto(s)
Micorrizas , Ozono , Populus , Micorrizas/fisiología , Simbiosis , Señales (Psicología) , Raíces de Plantas/metabolismo , Ecosistema , Populus/genética
2.
Plant Cell Environ ; 43(1): 87-102, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31423592

RESUMEN

Element content and expression of genes of interest on single cell types, such as stomata, provide valuable insights into their specific physiology, improving our understanding of leaf gas exchange regulation. We investigated how far differences in stomatal conductance (gs ) can be ascribed to changes in guard cells functioning in amphistomateous leaves. gs was measured during the day on both leaf sides, on well-watered and drought-stressed trees (two Populus euramericana Moench and two Populus nigra L. genotypes). In parallel, guard cells were dissected for element content and gene expressions analyses. Both were strongly arranged according to genotype, and drought had the lowest impact overall. Normalizing the data by genotype highlighted a structure on the basis of leaf sides and time of day both for element content and gene expression. Guard cells magnesium, phosphorus, and chlorine were the most abundant on the abaxial side in the morning, where gs was at the highest. In contrast, genes encoding H+ -ATPase and aquaporins were usually more abundant in the afternoon, whereas genes encoding Ca2+ -vacuolar antiporters, K+ channels, and ABA-related genes were in general more abundant on the adaxial side. Our work highlights the unique physiology of each leaf side and their analogous rhythmicity through the day.


Asunto(s)
Hojas de la Planta/genética , Populus/genética , ATPasas de Translocación de Protón/genética , ARN de Planta/aislamiento & purificación , Árboles/genética , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Sequías , Microanálisis por Sonda Electrónica , Regulación de la Expresión Génica de las Plantas , Genotipo , Desarrollo de la Planta , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estomas de Plantas/genética , Estomas de Plantas/metabolismo , Transpiración de Plantas/fisiología , Populus/clasificación , Populus/metabolismo , ATPasas de Translocación de Protón/metabolismo , ARN de Planta/genética , Árboles/metabolismo , Agua/fisiología
3.
J Exp Bot ; 69(21): 5157-5168, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30053124

RESUMEN

Plant organ growth results from cell production and cell expansion. Deciphering the contribution of each of these processes to growth rate is an important issue in developmental biology. Here, we investigated the cellular processes governing root elongation rate, considering two sources of variation: genotype and disturbance by chemicals (NaCl, polyethylene glycol, H2O2, abscisic acid). Exploiting the adventitious rooting capacity of the Populus genus, and using time-lapse imaging under infrared-light, particle image velocimetry, histological analysis, and kinematics, we quantified the cellular processes involved in root growth variation, and analysed the covariation patterns between growth parameters. The rate of cell production by the root apical meristem and the number of dividing cells were estimated in vivo without destructive measurement. We found that the rate of cell division contributed more to the variation in cell production rate than the number of dividing cells. Regardless of the source of variation, the length of the elongation zone was the best proxy for growth rate, summarizing rates of cell production and cell elongation into a single parameter. Our results demonstrate that cell production rate is the main driver of growth rate, whereas elemental elongation rate is a key driver of short-term growth adjustments.


Asunto(s)
División Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Populus/crecimiento & desarrollo , Ácido Abscísico/metabolismo , Genotipo , Peróxido de Hidrógeno/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Polietilenglicoles/metabolismo , Populus/efectos de los fármacos , Populus/genética , Cloruro de Sodio/metabolismo
4.
J Exp Bot ; 69(3): 537-551, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29211860

RESUMEN

The adaptive capacity of long-lived organisms such as trees to the predicted climate changes, including severe and successive drought episodes, will depend on the presence of genetic diversity and phenotypic plasticity. Here, the involvement of epigenetic mechanisms in phenotypic plasticity toward soil water availability was examined in Populus×euramericana. This work aimed at characterizing (i) the transcriptome plasticity, (ii) the genome-wide plasticity of DNA methylation, and (iii) the function of genes affected by a drought-rewatering cycle in the shoot apical meristem. Using microarray chips, differentially expressed genes (DEGs) and differentially methylated regions (DMRs) were identified for each water regime. The rewatering condition was associated with the highest variations of both gene expression and DNA methylation. Changes in methylation were observed particularly in the body of expressed genes and to a lesser extent in transposable elements. Together, DEGs and DMRs were significantly enriched in genes related to phytohormone metabolism or signaling pathways. Altogether, shoot apical meristem responses to changes in water availability involved coordinated variations in DNA methylation, as well as in gene expression, with a specific targeting of genes involved in hormone pathways, a factor that may enable phenotypic plasticity.


Asunto(s)
Genoma de Planta/fisiología , Meristema/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Populus/genética , Transcriptoma/fisiología , Agua/metabolismo , Epigénesis Genética/fisiología , Meristema/genética , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Transducción de Señal
5.
J Exp Bot ; 67(19): 5605-5614, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27664958

RESUMEN

Strong regions and physical barriers in soils may slow root elongation, leading to reduced water and nutrient uptake and decreased yield. In this study, the biomechanical responses of roots to axial mechanical forces were assessed by combining 3D live imaging, kinematics and a novel mechanical sensor. This system quantified Young's elastic modulus of intact poplar roots (32MPa), a rapid <0.2 mN touch-elongation sensitivity, and the critical elongation force applied by growing roots that resulted in bending. Kinematic analysis revealed a multiphase bio-mechanical response of elongation rate and curvature in 3D. Measured critical elongation force was accurately predicted from an Euler buckling model, indicating that no biologically mediated accommodation to mechanical forces influenced bending during this short period of time. Force applied by growing roots increased more than 15-fold when buckling was prevented by lateral bracing of the root. The junction between the growing and the mature zones was identified as a zone of mechanical weakness that seemed critical to the bending process. This work identified key limiting factors for root growth and buckling under mechanical constraints. The findings are relevant to crop and soil sciences, and advance our understanding of root growth in heterogeneous structured soils.


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Fenómenos Biomecánicos , Imagenología Tridimensional/métodos , Modelos Biológicos , Raíces de Plantas/fisiología , Populus/crecimiento & desarrollo , Estrés Mecánico , Imagen de Lapso de Tiempo/métodos
6.
J Exp Bot ; 67(21): 5961-5973, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27702994

RESUMEN

Molecular regulation of growth must include spatial and temporal coupling of cell production and cell expansion. The underlying mechanisms, especially under environmental challenge, remain obscure. Spatial patterns of cell processes make the root apex well suited to deciphering stress signaling pathways, and to investigating both processes. Kinematics and RNA-sequencing were used to analyze the immediate growth response of hydroponically grown Populus nigra cuttings submitted to osmotic stress. About 7400 genes and unannotated transcriptionally active regions were differentially expressed between the division and elongation zones. Following the onset of stress, growth decreased sharply, probably due to mechanical effects, before recovering partially. Stress impaired cell expansion over the apex, progressively shortened the elongation zone, and reduced the cell production rate. Changes in gene expression revealed that growth reduction was mediated by a shift in hormone homeostasis. Osmotic stress rapidly elicited auxin, ethylene, and abscisic acid. When growth restabilized, transcriptome remodeling became complex and zone specific, with the deployment of hormone signaling cascades, transcriptional regulators, and stress-responsive genes. Most transcriptional regulations fit growth reduction, but stress also promoted expression of some growth effectors, including aquaporins and expansins Together, osmotic stress interfered with growth by activating regulatory proteins rather than by repressing the machinery of expansive growth.


Asunto(s)
Presión Osmótica/fisiología , Cápsula de Raíz de Planta/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Fenómenos Biomecánicos/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Cápsula de Raíz de Planta/metabolismo , Cápsula de Raíz de Planta/fisiología , Análisis de Secuencia de ARN , Transducción de Señal/fisiología
7.
J Exp Bot ; 66(5): 1387-95, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25540436

RESUMEN

Understanding how cell division and cell elongation influence organ growth and development is a long-standing issue in plant biology. In plant roots, most of the cell divisions occur in a short and specialized region, the root apical meristem (RAM). Although RAM activity has been suggested to be of high importance to understand how roots grow and how the cell cycle is regulated, few experimental and numeric data are currently available. The characterization of the RAM is difficult and essentially based upon cell length measurements through destructive and time-consuming microscopy approaches. Here, a new non-invasive method is described that couples infrared light imaging and kinematic analyses and that allows in vivo measurements of the RAM length. This study provides a detailed description of the RAM activity, especially in terms of cell flux and cell division rate. We focused on roots of hydroponic grown poplars and confirmed our method on maize roots. How the RAM affects root growth rate is studied by taking advantage of the high inter-individual variability of poplar root growth. An osmotic stress was applied and did not significantly affect the RAM length, highlighting its homeostasis in short to middle-term responses. The methodology described here simplifies a lot experimental procedures, allows an increase in the number of individuals that can be taken into account in experiments, and means new experiments can be formulated that allow temporal monitoring of the RAM length.


Asunto(s)
Meristema/crecimiento & desarrollo , Fotograbar/métodos , Raíces de Plantas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , División Celular , Rayos Infrarrojos , Meristema/química , Meristema/efectos de la radiación , Raíces de Plantas/química , Raíces de Plantas/citología , Raíces de Plantas/efectos de la radiación , Zea mays/química , Zea mays/citología , Zea mays/efectos de la radiación
8.
Physiol Plant ; 154(1): 39-53, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25185760

RESUMEN

Phenotypic plasticity is considered as an important mechanism for plants to cope with environmental challenges. Leaf growth is one of the first macroscopic processes to be impacted by modification of soil water availability. In this study, we intended to analyze and compare plasticity at different scales. We examined the differential effect of water regime (optimal, moderate water deprivation and recovery) on growth and on the expression of candidate genes in leaves of different growth stages. Candidates were selected to assess components of growth response: abscisic acid signaling, water transport, cell wall modification and stomatal development signaling network. At the tree scale, the four studied poplar hybrids responded similarly to water regime. Meanwhile, leaf growth response was under genotype × environment interaction. Patterns of candidate gene expression enriched our knowledge about their functionality in poplars. For most candidates, transcript levels were strongly structured according to leaf growth performance while response to water regime was clearly dependent on genotype. The use of an index of plasticity revealed that the magnitude of the response was higher for gene expression than for macroscopic traits. In addition, the ranking of poplar genotypes for macroscopic traits well paralleled the one for gene expression.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Interacción Gen-Ambiente , Hojas de la Planta/crecimiento & desarrollo , Populus/fisiología , Agua/fisiología , Hojas de la Planta/metabolismo
9.
BMC Plant Biol ; 11: 77, 2011 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-21554668

RESUMEN

BACKGROUND: Renewed interest in plant×environment interactions has risen in the post-genomic era. In this context, high-throughput phenotyping platforms have been developed to create reproducible environmental scenarios in which the phenotypic responses of multiple genotypes can be analysed in a reproducible way. These platforms benefit hugely from the development of suitable databases for storage, sharing and analysis of the large amount of data collected. In the model plant Arabidopsis thaliana, most databases available to the scientific community contain data related to genetic and molecular biology and are characterised by an inadequacy in the description of plant developmental stages and experimental metadata such as environmental conditions. Our goal was to develop a comprehensive information system for sharing of the data collected in PHENOPSIS, an automated platform for Arabidopsis thaliana phenotyping, with the scientific community. DESCRIPTION: PHENOPSIS DB is a publicly available (URL: http://bioweb.supagro.inra.fr/phenopsis/) information system developed for storage, browsing and sharing of online data generated by the PHENOPSIS platform and offline data collected by experimenters and experimental metadata. It provides modules coupled to a Web interface for (i) the visualisation of environmental data of an experiment, (ii) the visualisation and statistical analysis of phenotypic data, and (iii) the analysis of Arabidopsis thaliana plant images. CONCLUSIONS: Firstly, data stored in the PHENOPSIS DB are of interest to the Arabidopsis thaliana community, particularly in allowing phenotypic meta-analyses directly linked to environmental conditions on which publications are still scarce. Secondly, data or image analysis modules can be downloaded from the Web interface for direct usage or as the basis for modifications according to new requirements. Finally, the structure of PHENOPSIS DB provides a useful template for the development of other similar databases related to genotype×environment interactions.


Asunto(s)
Arabidopsis/genética , Bases de Datos Factuales , Procesamiento de Imagen Asistido por Computador , Interfaz Usuario-Computador , Algoritmos , Arabidopsis/crecimiento & desarrollo , Ambiente , Genotipo , Internet , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo
10.
Plant Physiol ; 154(1): 357-72, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20631317

RESUMEN

Growth and carbon (C) fluxes are severely altered in plants exposed to soil water deficit. Correspondingly, it has been suggested that plants under water deficit suffer from C shortage. In this study, we test this hypothesis in Arabidopsis (Arabidopsis thaliana) by providing an overview of the responses of growth, C balance, metabolites, enzymes of the central metabolism, and a set of sugar-responsive genes to a sustained soil water deficit. The results show that under drought, rosette relative expansion rate is decreased more than photosynthesis, leading to a more positive C balance, while root growth is promoted. Several soluble metabolites accumulate in response to soil water deficit, with K(+) and organic acids as the main contributors to osmotic adjustment. Osmotic adjustment costs only a small percentage of the daily photosynthetic C fixation. All C metabolites measured (not only starch and sugars but also organic acids and amino acids) show a diurnal turnover that often increased under water deficit, suggesting that these metabolites are readily available for being metabolized in situ or exported to roots. On the basis of 30 enzyme activities, no in-depth reprogramming of C metabolism was observed. Water deficit induces a shift of the expression level of a set of sugar-responsive genes that is indicative of increased, rather than decreased, C availability. These results converge to show that the differential impact of soil water deficit on photosynthesis and rosette expansion results in an increased availability of C for the roots, an increased turnover of C metabolites, and a low-cost C-based osmotic adjustment, and these responses are performed without major reformatting of the primary metabolism machinery.


Asunto(s)
Aclimatación/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Agua/farmacología , Aclimatación/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Biomasa , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/genética , Ácidos Carboxílicos/metabolismo , Análisis Multivariante , Ósmosis/efectos de los fármacos , Fotoperiodo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Potasio/metabolismo , Solubilidad/efectos de los fármacos , Almidón/metabolismo
11.
BMC Biol ; 8: 18, 2010 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-20202192

RESUMEN

BACKGROUND: Technological advances have enabled the accurate quantification of gene expression, even within single cell types. While transcriptome analyses are routinely performed, most experimental designs only provide snapshots of gene expression. Molecular mechanisms underlying cell fate or positional signalling have been revealed through these discontinuous datasets. However, in developing multicellular structures, temporal and spatial cues, known to directly influence transcriptional networks, get entangled as the cells are displaced and expand. Access to an unbiased view of the spatiotemporal regulation of gene expression occurring during development requires a specific framework that properly quantifies the rate of change of a property in a moving and expanding element, such as a cell or an organ segment. RESULTS: We show how the rate of change in gene expression can be quantified by combining kinematics and real-time polymerase chain reaction data in a mechanistic model which considers any organ as a continuum. This framework was applied in order to assess the developmental regulation of the two reference genes Actin11 and Elongation Factor 1-beta in the apex of poplar root. The growth field was determined by time-lapse photography and transcript density was obtained at high spatial resolution. The net accumulation rates of the transcripts of the two genes were found to display highly contrasted developmental profiles. Actin11 showed pulses of up and down regulation in the accelerating and decelerating parts of the growth zone while the dynamic of EF1beta were much slower. This framework provides key information about gene regulation in a developing organ, such as the location, the duration and the intensity of gene induction/repression. CONCLUSIONS: We demonstrated that gene expression patterns can be monitored using the continuity equation without using mutants or reporter constructions. Given the rise of imaging technologies, this framework in our view opens a new way to dissect the molecular basis of growth regulation, even in non-model species or complex structures.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Raíces de Plantas/genética , Populus/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Modelos Teóricos , Factor 1 de Elongación Peptídica/genética , Reacción en Cadena de la Polimerasa
12.
BMC Genomics ; 11: 630, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21073700

RESUMEN

BACKGROUND: Comparative genomics has emerged as a promising means of unravelling the molecular networks underlying complex traits such as drought tolerance. Here we assess the genotype-dependent component of the drought-induced transcriptome response in two poplar genotypes differing in drought tolerance. Drought-induced responses were analysed in leaves and root apices and were compared with available transcriptome data from other Populus species. RESULTS: Using a multi-species designed microarray, a genomic DNA-based selection of probesets provided an unambiguous between-genotype comparison. Analyses of functional group enrichment enabled the extraction of processes physiologically relevant to drought response. The drought-driven changes in gene expression occurring in root apices were consistent across treatments and genotypes. For mature leaves, the transcriptome response varied weakly but in accordance with the duration of water deficit. A differential clustering algorithm revealed similar and divergent gene co-expression patterns among the two genotypes. Since moderate stress levels induced similar physiological responses in both genotypes, the genotype-dependent transcriptional responses could be considered as intrinsic divergences in genome functioning. Our meta-analysis detected several candidate genes and processes that are differentially regulated in root and leaf, potentially under developmental control, and preferentially involved in early and long-term responses to drought. CONCLUSIONS: In poplar, the well-known drought-induced activation of sensing and signalling cascades was specific to the early response in leaves but was found to be general in root apices. Comparing our results to what is known in arabidopsis, we found that transcriptional remodelling included signalling and a response to energy deficit in roots in parallel with transcriptional indices of hampered assimilation in leaves, particularly in the drought-sensitive poplar genotype.


Asunto(s)
Sequías , Perfilación de la Expresión Génica , Genoma de Planta/genética , Meristema/genética , Metaanálisis como Asunto , Hojas de la Planta/genética , Populus/genética , Análisis por Conglomerados , Ecosistema , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes/genética , Genes de Plantas/genética , Marcadores Genéticos , Genotipo , Anotación de Secuencia Molecular , Especificidad de Órganos/genética , Populus/fisiología , Transcripción Genética/efectos de los fármacos
13.
Tree Physiol ; 38(3): 320-339, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28541580

RESUMEN

Wood is a renewable resource that can be employed for the production of second generation biofuels by enzymatic saccharification and subsequent fermentation. Knowledge on how the saccharification potential is affected by genotype-related variation of wood traits and drought is scarce. Here, we used three Populus nigra L. genotypes from habitats differing in water availability to (i) investigate the relationships between wood anatomy, lignin content and saccharification and (ii) identify genes and co-expressed gene clusters related to genotype and drought-induced variation in wood traits and saccharification potential. The three poplar genotypes differed in wood anatomy, lignin content and saccharification potential. Drought resulted in reduced cambial activity, decreased vessel and fiber lumina, and increased the saccharification potential. The saccharification potential was unrelated to lignin content as well as to most wood anatomical traits. RNA sequencing of the developing xylem revealed that 1.5% of the analyzed genes were differentially expressed in response to drought, while 67% differed among the genotypes. Weighted gene correlation network analysis identified modules of co-expressed genes correlated with saccharification potential. These modules were enriched in gene ontology terms related to cell wall polysaccharide biosynthesis and modification and vesicle transport, but not to lignin biosynthesis. Among the most strongly saccharification-correlated genes, those with regulatory functions, especially kinases, were prominent. We further identified transcription factors whose transcript abundances differed among genotypes, and which were co-regulated with genes for biosynthesis and modifications of hemicelluloses and pectin. Overall, our study suggests that the regulation of pectin and hemicellulose metabolism is a promising target for improving wood quality of second generation bioenergy crops. The causal relationship of the identified genes and pathways with saccharification potential needs to be validated in further experiments.


Asunto(s)
Sequías , Genotipo , Populus/anatomía & histología , Populus/genética , Madera/anatomía & histología , Madera/metabolismo , Expresión Génica , Genes de Plantas , Hidrólisis , Lignina/metabolismo , Familia de Multigenes , Polisacáridos/metabolismo , Populus/metabolismo
14.
Nat Plants ; 4(7): 440-452, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915331

RESUMEN

Oaks are an important part of our natural and cultural heritage. Not only are they ubiquitous in our most common landscapes1 but they have also supplied human societies with invaluable services, including food and shelter, since prehistoric times2. With 450 species spread throughout Asia, Europe and America3, oaks constitute a critical global renewable resource. The longevity of oaks (several hundred years) probably underlies their emblematic cultural and historical importance. Such long-lived sessile organisms must persist in the face of a wide range of abiotic and biotic threats over their lifespans. We investigated the genomic features associated with such a long lifespan by sequencing, assembling and annotating the oak genome. We then used the growing number of whole-genome sequences for plants (including tree and herbaceous species) to investigate the parallel evolution of genomic characteristics potentially underpinning tree longevity. A further consequence of the long lifespan of trees is their accumulation of somatic mutations during mitotic divisions of stem cells present in the shoot apical meristems. Empirical4 and modelling5 approaches have shown that intra-organismal genetic heterogeneity can be selected for6 and provides direct fitness benefits in the arms race with short-lived pests and pathogens through a patchwork of intra-organismal phenotypes7. However, there is no clear proof that large-statured trees consist of a genetic mosaic of clonally distinct cell lineages within and between branches. Through this case study of oak, we demonstrate the accumulation and transmission of somatic mutations and the expansion of disease-resistance gene families in trees.


Asunto(s)
Genoma de Planta/genética , Quercus/genética , Evolución Biológica , ADN de Plantas/genética , Variación Genética/genética , Longevidad/genética , Mutación , Filogenia , Análisis de Secuencia de ADN
15.
Bio Protoc ; 7(14): e2390, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34541126

RESUMEN

Phenotyping the dynamics of root responses to environmental cues is necessary to understand plant acclimation to their environment. Continuous monitoring of root growth is challenging because roots normally grow belowground and are very sensitive to their growth environment. This protocol combines infrared imaging with hydroponic cultivation for kinematic analyses. It allows continuous imaging at fine spatiotemporal resolution and disturbs roots minimally. Examples are provided of how the procedure and materials can be adapted for 3D monitoring and of how environmental stress may be manipulated for experimental purposes.

16.
Gene ; 342(2): 199-209, 2004 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-15527979

RESUMEN

Arginine decarboxylase (ADC) is a key enzyme involved in the synthesis of polyamines, which have been implicated in developmental processes and stress responses in higher plants. An ancestral ADC gene appears to have been duplicated at the origin of the Brassicaceae family, thus yielding two paralogues in the derived taxa. ADC gene structure was investigated in Pringlea antiscorbutica R. Br., a geographically isolated Brassicaceae species that is endemic from the subantarctic region. P. antiscorbutica exhibits several biochemical and physiological adaptations related to this cold and harsh environment, including high levels of polyamines, which is unusual in higher plants, and especially high levels of agmatine, the product of the ADC-catalysed reaction. Various ADC clones were obtained from P. antiscorbutica. Sequence and phylogenetic analysis showed that all these clones fitted with the presence of two paralogues, PaADC1 and PaADC2, in P. antiscorbutica. Expression of these ADC paralogues was analyzed in P. antiscorbutica during vegetative development and response to stress. Whereas PaADC2 was expressed at both seedling and mature stages, PaADC1 transcripts were hardly detected during early development and were significantly expressed in mature plants. Moreover, PaADC2, but not PaADC1, expression was up-regulated in response to chilling and salt stress at seedling stage. Analysis of 5' regulatory regions of these ADC genes revealed several differences in putative cis-regulatory elements, which could be associated with specific expression patterns. These results were compared to ADC paralogue expression in Arabidopsis thaliana and are discussed in the evolutionary context of genetic diversity resulting from gene duplication.


Asunto(s)
Brassicaceae/genética , Carboxiliasas/genética , Isoenzimas/genética , Región de Flanqueo 5'/genética , Agmatina/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Southern Blotting , Brassicaceae/crecimiento & desarrollo , Brassicaceae/metabolismo , Carboxiliasas/metabolismo , Clonación Molecular , Frío , ADN de Plantas/química , ADN de Plantas/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Filogenia , Poliaminas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
17.
New Phytol ; 163(3): 519-531, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33873735

RESUMEN

• In plants, polyamines can generally be synthesized by the ornithine decarboxylase and arginine decarboxylase pathways. However, the model plant Arabidopsis thaliana appears to possess only the arginine decarboxylase pathway. As two paralogous ARGININE DECARBOXYLASE (ADC) genes are present in Arabidopsis, we investigated differential expression and potential differences of promoter activity during seedling development and under specific stress conditions. • Promoter activities were studied in stable homozygotic transformants harbouring promoter::reporter gene fusions. • Under temperate conditions, ADC2 promoter activity was strongly associated with seed germination, root and leaf development, whereas ADC1 promoter activity was low during vegetative development. Light, sucrose and ethylene were shown to be important regulators of ADC2 promoter activity. By contrast, in roots and leaves of plantlets subjected to chilling treatment the ADC1 paralogue showed high promoter activity whereas ADC2 promoter activity was considerably decreased. • In situations of seed germination, root development and response to chilling, the modifications of promoter activities were associated with changes in mRNA levels, emphasizing the involvement of transcriptional regulation in ARGININE DECARBOXYLASE gene expression.

18.
New Phytol ; 162(3): 705-715, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33873770

RESUMEN

• Early development of Kerguelen cabbage (Pringlea antiscorbutica) was studied in the Kerguelen archipelago, its natural habitat, and under laboratory conditions. Polyamines, which are involved in developmental processes and responses to stress in several plant species, were used as markers of physiological status of P. antiscorbutica seedlings. • Analysis under laboratory conditions of responses to low water availability and to salinity enabled identification of major environmental constraints restricting seedling development in the subantarctic region. • Salt stress was found to modify polyamine distribution between seedling organs, in controlled experiments and in the field, thus indicating that polyamine responses to salt stress were functional in the field at Kerguelen. By contrast, exposure to low water availability induced different polyamine responses in controlled experiments and in the field. • The present work thus shows that, under certain conditions, polyamine concentrations can be used as a marker of specific stress responses of seedlings in the field. Discrepancies are discussed in terms of growth conditions in the laboratory and of combined stresses in natural habitats.

19.
PLoS One ; 8(2): e55506, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23393587

RESUMEN

Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy could be suspected.


Asunto(s)
Acuaporinas/metabolismo , Populus/metabolismo , Acuaporinas/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes Duplicados/genética , Genes Duplicados/fisiología , Populus/genética
20.
Funct Plant Biol ; 35(11): 1147-1162, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32688862

RESUMEN

Arabidopsis thaliana (L.) Heynh. is used as a model plant in many research projects. However, few models simulate its growth at the whole-plant scale. The present study describes the first model of Arabidopsis growth integrating organogenesis, morphogenesis and carbon-partitioning processes for aerial and subterranean parts of the plant throughout its development. The objective was to analyse competition among sinks as they emerge from patterns of plant structural development. The model was adapted from the GreenLab model and was used to estimate organ sink strengths by optimisation against biomass measurements. Dry biomass production was calculated by a radiation use efficiency-based approach. Organogenesis processes were parameterised based on experimental data. The potential of this model for growth analysis was assessed using the Columbia ecotype, which was grown in standard environmental conditions. Three phases were observed in the overall time course of trophic competition within the plant. In the vegetative phase, no competition was observed. In the reproductive phase, competition increased with a strong increase when lateral inflorescences developed. Roots and internodes and structures bearing siliques were strong sinks and had a similar impact on competition. The application of the GreenLab model to the growth analysis of A. thaliana provides new insights into source-sink relationships as functions of phenology and morphogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA