Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(4): 668-679, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38508194

RESUMEN

Populations of the Eastern Highlands of Papua New Guinea (EHPNG, area 11,157 km2) lived in relative isolation from the rest of the world until the mid-20th century, and the region contains a wealth of linguistic and cultural diversity. Notably, several populations of EHPNG were devastated by an epidemic prion disease, kuru, which at its peak in the mid-twentieth century led to some villages being almost depleted of adult women. Until now, population genetic analyses to learn about genetic diversity, migration, admixture, and the impact of the kuru epidemic have been restricted to a small number of variants or samples. Here, we present a population genetic analysis of the region based on genome-wide genotype data of 943 individuals from 21 linguistic groups and 68 villages in EHPNG, including 34 villages in the South Fore linguistic group, the group most affected by kuru. We find a striking degree of genetic population structure in the relatively small region (average FST between linguistic groups 0.024). The genetic population structure correlates well with linguistic grouping, with some noticeable exceptions that reflect the clan system of community organization that has historically existed in EHPNG. We also detect the presence of migrant individuals within the EHPNG region and observe a significant excess of females among migrants compared to among non-migrants in areas of high kuru exposure (p = 0.0145, chi-squared test). This likely reflects the continued practice of patrilocality despite documented fears and strains placed on communities as a result of kuru and its associated skew in female incidence.


Asunto(s)
Kuru , Priones , Adulto , Femenino , Humanos , Kuru/epidemiología , Kuru/genética , Kuru/historia , Papúa Nueva Guinea/epidemiología , Priones/genética , Genotipo , Aprendizaje
2.
EMBO J ; 33(14): 1527-47, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-24843046

RESUMEN

Prions consist of aggregates of abnormal conformers of the cellular prion protein (PrP(C)). They propagate by recruiting host-encoded PrP(C) although the critical interacting proteins and the reasons for the differences in susceptibility of distinct cell lines and populations are unknown. We derived a lineage of cell lines with markedly differing susceptibilities, unexplained by PrP(C) expression differences, to identify such factors. Transcriptome analysis of prion-resistant revertants, isolated from highly susceptible cells, revealed a gene expression signature associated with susceptibility and modulated by differentiation. Several of these genes encode proteins with a role in extracellular matrix (ECM) remodelling, a compartment in which disease-related PrP is deposited. Silencing nine of these genes significantly increased susceptibility. Silencing of Papss2 led to undersulphated heparan sulphate and increased PrP(C) deposition at the ECM, concomitantly with increased prion propagation. Moreover, inhibition of fibronectin 1 binding to integrin α8 by RGD peptide inhibited metalloproteinases (MMP)-2/9 whilst increasing prion propagation. In summary, we have identified a gene regulatory network associated with prion propagation at the ECM and governed by the cellular differentiation state.


Asunto(s)
Diferenciación Celular/genética , Matriz Extracelular/metabolismo , Redes Reguladoras de Genes/genética , Modelos Moleculares , Proteínas PrPC/metabolismo , Priones/genética , Transcriptoma/genética , Animales , Clonación Molecular , Citometría de Flujo , Humanos , Ratones , Análisis por Micromatrices , Microscopía Fluorescente , Proteínas PrPC/genética , Priones/química , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrofotometría , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo
4.
PLoS Genet ; 10(9): e1004642, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25255445

RESUMEN

There are two major pathways leading to induction of NF-κB subunits. The classical (or canonical) pathway typically leads to the induction of RelA or c-Rel containing complexes, and involves the degradation of IκBα in a manner dependent on IκB kinase (IKK) ß and the IKK regulatory subunit NEMO. The alternative (or non-canonical) pathway, involves the inducible processing of p100 to p52, leading to the induction of NF-κB2(p52)/RelB containing complexes, and is dependent on IKKα and NF-κB inducing kinase (NIK). Here we demonstrate that in primary human fibroblasts, the alternative NF-κB pathway subunits NF-κB2 and RelB have multiple, but distinct, effects on the expression of key regulators of the cell cycle, reactive oxygen species (ROS) generation and protein stability. Specifically, following siRNA knockdown, quantitative PCR, western blot analyses and chromatin immunoprecipitation (ChIP) show that NF-κB2 regulates the expression of CDK4 and CDK6, while RelB, through the regulation of genes such as PSMA5 and ANAPC1, regulates the stability of p21WAF1 and the tumour suppressor p53. These combine to regulate the activity of the retinoblastoma protein, Rb, leading to induction of polycomb protein EZH2 expression. Moreover, our ChIP analysis demonstrates that EZH2 is also a direct NF-κB target gene. Microarray analysis revealed that in fibroblasts, EZH2 antagonizes a subset of p53 target genes previously associated with the senescent cell phenotype, including DEK and RacGAP1. We show that this pathway provides the major route of crosstalk between the alternative NF-κB pathway and p53, a consequence of which is to suppress cell senescence. Importantly, we find that activation of NF-κB also induces EZH2 expression in CD40L stimulated cells from Chronic Lymphocytic Leukemia patients. We therefore propose that this pathway provides a mechanism through which microenvironment induced NF-κB can inhibit tumor suppressor function and promote tumorigenesis.


Asunto(s)
Senescencia Celular/genética , FN-kappa B/metabolismo , Complejo Represivo Polycomb 2/genética , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Ligando de CD40/agonistas , Ligando de CD40/metabolismo , Análisis por Conglomerados , Proteína Potenciadora del Homólogo Zeste 2 , Activación Enzimática , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Modelos Biológicos , Subunidad p52 de NF-kappa B/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Unión Proteica , Estabilidad Proteica , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción ReIB/metabolismo , Transcripción Genética , Transcriptoma
5.
Hum Mol Genet ; 23(19): 5102-8, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24833721

RESUMEN

Prion diseases (transmissible spongiform encephalopathies) are fatal neurodegenerative diseases, including Creutzfeldt-Jakob disease in humans, scrapie in sheep and bovine spongiform encephalopathy in cattle. While genome-wide association studies in human and quantitative trait loci mapping in mice have provided evidence for multiple susceptibility genes, few of these have been confirmed functionally. Phenotyping mouse models is generally the method of choice. However, this is not a feasible option where many novel genes, without pre-existing models, would need to be tested. We have therefore developed and applied an in-vitro screen to triage and prioritize candidate modifier genes for more detailed future studies which is faster, far more cost effective and ethical relative to mouse bioassay models. An in vitro prion bioassay, the scrapie cell assay, uses a neuroblastoma-derived cell line (PK1) that is susceptible to RML prions and able to propagate prions at high levels. In this study, we have generated stable gene silencing and/or overexpressing PK1-derived cell lines to test whether perturbation of 14 candidate genes affects prion susceptibility. While no consistent differences were determined for seven genes, highly significant changes were detected for Zbtb38, Sorcs1, Stmn2, Hspa13, Fkbp9, Actr10 and Plg, suggesting that they play key roles in the fundamental processes of prion propagation or clearance. Many neurodegenerative diseases involve the accumulation of misfolded protein aggregates and 'prion-like' seeding and spread has been implicated in their pathogenesis. It is therefore expected that some of these prion-modifier genes may be of wider relevance in neurodegeneration.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedades por Prión/genética , Animales , Línea Celular , Expresión Génica , Técnicas de Inactivación de Genes , Estudio de Asociación del Genoma Completo , Humanos , Técnicas In Vitro , Ratones , Sitios de Carácter Cuantitativo , Interferencia de ARN , Scrapie
6.
BMC Med Genet ; 17: 28, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27055460

RESUMEN

BACKGROUND: Human prion diseases are relentlessly progressive neurodegenerative disorders which include sporadic Creutzfeldt-Jakob disease (sCJD) and variant CJD (vCJD). Aside from variants of the prion protein gene (PRNP) replicated association at genome-wide levels of significance has proven elusive. A recent association study identified variants in or near to the PLCXD3 gene locus as strong disease risk factors in multiple human prion diseases. This study claimed the first non-PRNP locus to be highly significantly associated with prion disease in genomic studies. METHODS: A sub-study of a genome-wide association study with imputation aiming to replicate the finding at PLCXD3 including 129 vCJD and 2500 sCJD samples. Whole exome sequencing to identify rare coding variants of PLCXD3. RESULTS: Imputation of relevant polymorphisms was accurate based on wet genotyping of a sample. We found no supportive evidence that PLCXD3 variants are associated with disease. CONCLUSION: The marked discordance in vCJD genotype frequencies between studies, despite extensive overlap in vCJD cases, and the finding of Hardy-Weinberg disequilibrium in the original study, suggests possible reasons for the discrepancies between studies.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/genética , Fosfoinositido Fosfolipasa C/genética , Polimorfismo de Nucleótido Simple , Síndrome de Creutzfeldt-Jakob/diagnóstico , Exones , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Alemania , Humanos , Desequilibrio de Ligamiento , Proteínas Priónicas , Priones/genética , Priones/metabolismo , Factores de Riesgo , Estados Unidos
7.
Brain ; 138(Pt 11): 3386-99, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26268531

RESUMEN

Patients with iatrogenic Creutzfeldt-Jakob disease due to administration of cadaver-sourced growth hormone during childhood are still being seen in the UK 30 years after cessation of this treatment. Of the 77 patients who have developed iatrogenic Creutzfeldt-Jakob disease, 56 have been genotyped. There has been a marked change in genotype profile at polymorphic codon 129 of the prion protein gene (PRNP) from predominantly valine homozygous to a mixed picture of methionine homozygous and methionine-valine heterozygous over time. The incubation period of iatrogenic Creutzfeldt-Jakob disease is significantly different between all three genotypes. This experience is a striking contrast with that in France and the USA, which may relate to contamination of different growth hormone batches with different strains of human prions. We describe the clinical, imaging, molecular and autopsy features in 22 of 24 patients who have developed iatrogenic Creutzfeldt-Jakob disease in the UK since 2003. Mean age at onset of symptoms was 42.7 years. Gait ataxia and lower limb dysaesthesiae were the most frequent presenting symptoms. All had cerebellar signs, and the majority had myoclonus and lower limb pyramidal signs, with relatively preserved cognitive function, when first seen. There was a progressive decline in neurological and cognitive function leading to death after 5-32 (mean 14) months. Despite incubation periods approaching 40 years, the clinical duration in methionine homozygote patients appeared to be shorter than that seen in heterozygote patients. MRI showed restricted diffusion in the basal ganglia, thalamus, hippocampus, frontal and the paracentral motor cortex and cerebellar vermis. The electroencephalogram was abnormal in 15 patients and cerebrospinal fluid 14-3-3 protein was positive in half the patients. Neuropathological examination was conducted in nine patients. All but one showed synaptic prion deposition with numerous kuru type plaques in the basal ganglia, anterior frontal and parietal cortex, thalamus, basal ganglia and cerebellum. The patient with the shortest clinical duration had an atypical synaptic deposition of abnormal prion protein and no kuru plaques. Taken together, these data provide a remarkable example of the interplay between the strain of the pathogen and host prion protein genotype. Based on extensive modelling of human prion transmission barriers in transgenic mice expressing human prion protein on a mouse prion protein null background, the temporal distribution of codon 129 genotypes within the cohort of patients with iatrogenic Creutzfeldt-Jakob disease in the UK suggests that there was a point source of infecting prion contamination of growth hormone derived from a patient with Creutzfeldt-Jakob disease expressing prion protein valine 129.


Asunto(s)
Encéfalo/patología , Síndrome de Creutzfeldt-Jakob/genética , Contaminación de Medicamentos , Trastornos del Crecimiento/tratamiento farmacológico , Hormona de Crecimiento Humana/uso terapéutico , Enfermedad Iatrogénica , Periodo de Incubación de Enfermedades Infecciosas , Priones/genética , Adulto , Codón , Síndrome de Creutzfeldt-Jakob/etiología , Síndrome de Creutzfeldt-Jakob/patología , Síndrome de Creutzfeldt-Jakob/fisiopatología , Progresión de la Enfermedad , Electroencefalografía , Femenino , Interacción Gen-Ambiente , Genotipo , Homocigoto , Humanos , Imagen por Resonancia Magnética , Masculino , Metionina , Persona de Mediana Edad , Proteínas Priónicas , Estudios Retrospectivos , Factores de Tiempo , Reino Unido , Valina
8.
Brain ; 137(Pt 3): 819-33, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24459107

RESUMEN

Huntington's disease is an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The peripheral innate immune system contributes to Huntington's disease pathogenesis and has been targeted successfully to modulate disease progression, but mechanistic understanding relating this to mutant huntingtin expression in immune cells has been lacking. Here we demonstrate that human Huntington's disease myeloid cells produce excessive inflammatory cytokines as a result of the cell-intrinsic effects of mutant huntingtin expression. A direct effect of mutant huntingtin on the NFκB pathway, whereby it interacts with IKKγ, leads to increased degradation of IκB and subsequent nuclear translocation of RelA. Transcriptional alterations in intracellular immune signalling pathways are also observed. Using a novel method of small interfering RNA delivery to lower huntingtin expression, we show reversal of disease-associated alterations in cellular function-the first time this has been demonstrated in primary human cells. Glucan-encapsulated small interfering RNA particles were used to lower huntingtin levels in human Huntington's disease monocytes/macrophages, resulting in a reversal of huntingtin-induced elevated cytokine production and transcriptional changes. These findings improve our understanding of the role of innate immunity in neurodegeneration, introduce glucan-encapsulated small interfering RNA particles as tool for studying cellular pathogenesis ex vivo in human cells and raise the prospect of immune cell-directed HTT-lowering as a therapeutic in Huntington's disease.


Asunto(s)
Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Células Mieloides/patología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/fisiología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Transducción de Señal/genética , Regulación de la Expresión Génica/inmunología , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Inmunidad Innata/genética , Células Mieloides/inmunología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , ARN Interferente Pequeño/uso terapéutico , Transducción de Señal/inmunología , Células U937
9.
Proc Natl Acad Sci U S A ; 109(34): 13722-7, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22869728

RESUMEN

Prion diseases are fatal neurodegenerative disorders that include bovine spongiform encephalopathy (BSE) and scrapie in animals and Creutzfeldt-Jakob disease (CJD) in humans. They are characterized by long incubation periods, variation in which is determined by many factors including genetic background. In some cases it is possible that incubation time may be directly correlated to the level of gene expression. To test this hypothesis, we combined incubation time data from five different inbred lines of mice with quantitative gene expression profiling in normal brains and identified five genes with expression levels that correlate with incubation time. One of these genes, Hspa13 (Stch), is a member of the Hsp70 family of ATPase heat shock proteins, which have been previously implicated in prion propagation. To test whether Hspa13 plays a causal role in determining the incubation period, we tested two overexpressing mouse models. The Tc1 human chromosome 21 (Hsa21) transchromosomic mouse model of Down syndrome is trisomic for many Hsa21 genes including Hspa13 and following Chandler/Rocky Mountain Laboratory (RML) prion inoculation, shows a 4% reduction in incubation time. Furthermore, a transgenic model with eightfold overexpression of mouse Hspa13 exhibited highly significant reductions in incubation time of 16, 15, and 7% following infection with Chandler/RML, ME7, and MRC2 prion strains, respectively. These data further implicate Hsp70-like molecular chaperones in protein misfolding disorders such as prion disease.


Asunto(s)
Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas HSP70 de Choque Térmico/fisiología , Enfermedades por Prión/genética , Adenosina Trifosfatasas/química , Animales , Proteínas HSP70 de Choque Térmico/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Modelos Genéticos , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Priones/metabolismo , ARN Complementario/metabolismo
10.
Hum Mol Genet ; 21(8): 1897-906, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22210626

RESUMEN

Prion diseases are fatal neurodegenerative diseases of humans and animals caused by the misfolding and aggregation of prion protein (PrP). Mammalian prion diseases are under strong genetic control but few risk factors are known aside from the PrP gene locus (PRNP). No genome-wide association study (GWAS) has been done aside from a small sample of variant Creutzfeldt-Jakob disease (CJD). We conducted GWAS of sporadic CJD (sCJD), variant CJD (vCJD), iatrogenic CJD, inherited prion disease, kuru and resistance to kuru despite attendance at mortuary feasts. After quality control, we analysed 2000 samples and 6015 control individuals (provided by the Wellcome Trust Case Control Consortium and KORA-gen) for 491032-511862 SNPs in the European study. Association studies were done in each geographical and aetiological group followed by several combined analyses. The PRNP locus was highly associated with risk in all geographical and aetiological groups. This association was driven by the known coding variation at rs1799990 (PRNP codon 129). No non-PRNP loci achieved genome-wide significance in the meta-analysis of all human prion disease. SNPs at the ZBTB38-RASA2 locus were associated with CJD in the UK (rs295301, P = 3.13 × 10(-8); OR, 0.70) but these SNPs showed no replication evidence of association in German sCJD or in Papua New Guinea-based tests. A SNP in the CHN2 gene was associated with vCJD [P = 1.5 × 10(-7); odds ratio (OR), 2.36], but not in UK sCJD (P = 0.049; OR, 1.24), in German sCJD or in PNG groups. In the overall meta-analysis of CJD, 14 SNPs were associated (P < 10(-5); two at PRNP, three at ZBTB38-RASA2, nine at nine other independent non-PRNP loci), more than would be expected by chance. None of the loci recently identified as genome-wide significant in studies of other neurodegenerative diseases showed any clear evidence of association in prion diseases. Concerning common genetic variation, it is likely that the PRNP locus contains the only strong risk factors that act universally across human prion diseases. Our data are most consistent with several other risk loci of modest overall effects which will require further genetic association studies to provide definitive evidence.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Enfermedades por Prión/genética , Priones/genética , Estudios de Casos y Controles , Síndrome de Creutzfeldt-Jakob/genética , Resistencia a la Enfermedad , Encefalopatía Espongiforme Bovina/genética , Femenino , Humanos , Kuru/genética , Proteínas de Neoplasias/genética , Proteínas Priónicas , Factores de Riesgo , Proteínas Activadoras de ras GTPasa/genética
11.
PLoS Pathog ; 8(2): e1002538, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22359509

RESUMEN

In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood. A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles.


Asunto(s)
Células Dendríticas/ultraestructura , Exosomas/ultraestructura , Proteínas PrPC/análisis , Scrapie/patología , Animales , Separación Celular , Células Dendríticas/metabolismo , Exosomas/metabolismo , Citometría de Flujo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Proteínas PrPC/metabolismo , Proteínas PrPC/ultraestructura , Scrapie/metabolismo , Bazo/metabolismo , Bazo/patología
12.
Nat Genet ; 37(8): 806-8, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16041373

RESUMEN

We have previously reported a large Danish pedigree with autosomal dominant frontotemporal dementia (FTD) linked to chromosome 3 (FTD3). Here we identify a mutation in CHMP2B, encoding a component of the endosomal ESCRTIII complex, and show that it results in aberrant mRNA splicing in tissue samples from affected members of this family. We also describe an additional missense mutation in an unrelated individual with FTD. Aberration in the endosomal ESCRTIII complex may result in FTD and neurodegenerative disease.


Asunto(s)
Demencia/genética , Mutación , Proteínas del Tejido Nervioso/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte , Humanos , Mutación Missense , Linaje , Empalme del ARN
13.
PLoS One ; 19(7): e0304528, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39079175

RESUMEN

Human prion diseases are rare, transmissible and often rapidly progressive dementias. The most common type, sporadic Creutzfeldt-Jakob disease (sCJD), is highly variable in clinical duration and age at onset. Genetic determinants of late onset or slower progression might suggest new targets for research and therapeutics. We assembled and array genotyped sCJD cases diagnosed in life or at autopsy. Clinical duration (median:4, interquartile range (IQR):2.5-9 (months)) was available in 3,773 and age at onset (median:67, IQR:61-73 (years)) in 3,767 cases. Phenotypes were successfully transformed to approximate normal distributions allowing genome-wide analysis without statistical inflation. 53 SNPs achieved genome-wide significance for the clinical duration phenotype; all of which were located at chromosome 20 (top SNP rs1799990, pvalue = 3.45x10-36, beta = 0.34 for an additive model; rs1799990, pvalue = 9.92x10-67, beta = 0.84 for a heterozygous model). Fine mapping, conditional and expression analysis suggests that the well-known non-synonymous variant at codon 129 is the obvious outstanding genome-wide determinant of clinical duration. Pathway analysis and suggestive loci are described. No genome-wide significant SNP determinants of age at onset were found, but the HS6ST3 gene was significant (pvalue = 1.93 x 10-6) in a gene-based test. We found no evidence of genome-wide genetic correlation between case-control (disease risk factors) and case-only (determinants of phenotypes) studies. Relative to other common genetic variants, PRNP codon 129 is by far the outstanding modifier of CJD survival suggesting only modest or rare variant effects at other genetic loci.


Asunto(s)
Edad de Inicio , Síndrome de Creutzfeldt-Jakob , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , Anciano , Persona de Mediana Edad , Femenino , Masculino , Fenotipo , Genotipo
14.
N Engl J Med ; 361(21): 2056-65, 2009 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-19923577

RESUMEN

BACKGROUND: Kuru is a devastating epidemic prion disease that affected a highly restricted geographic area of the Papua New Guinea highlands; at its peak, it predominantly affected adult women and children of both sexes. Its incidence has steadily declined since the cessation of its route of transmission, endocannibalism. METHODS: We performed genetic and selected clinical and genealogic assessments of more than 3000 persons from Eastern Highland populations, including 709 who participated in cannibalistic mortuary feasts, 152 of whom subsequently died of kuru. RESULTS: Persons who were exposed to kuru and survived the epidemic in Papua New Guinea are predominantly heterozygotes at the known resistance factor at codon 129 of the prion protein gene (PRNP). We now report a novel PRNP variant--G127V--that was found exclusively in people who lived in the region in which kuru was prevalent and that was present in half of the otherwise susceptible women from the region of highest exposure who were homozygous for methionine at PRNP codon 129. Although this allele is common in the area with the highest incidence of kuru, it is not found in patients with kuru and in unexposed population groups worldwide. Genealogic analysis reveals a significantly lower incidence of kuru in pedigrees that harbor the protective allele than in geographically matched control families. CONCLUSIONS: The 127V polymorphism is an acquired prion disease resistance factor selected during the kuru epidemic, rather than a pathogenic mutation that could have triggered the kuru epidemic. Variants at codons 127 and 129 of PRNP demonstrate the population genetic response to an epidemic of prion disease and represent a powerful episode of recent selection in humans.


Asunto(s)
Predisposición Genética a la Enfermedad , Kuru/genética , Polimorfismo Genético , Priones/genética , Adolescente , Adulto , Anciano , Canibalismo , Brotes de Enfermedades , Femenino , Frecuencia de los Genes , Aptitud Genética , Genotipo , Haplotipos , Humanos , Kuru/epidemiología , Masculino , Persona de Mediana Edad , Papúa Nueva Guinea/epidemiología , Proteínas Priónicas , Adulto Joven
15.
PLoS Genet ; 5(2): e1000383, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19214206

RESUMEN

Prion diseases are fatal transmissible neurodegenerative disorders, which include Scrapie, Bovine Spongiform Encephalopathy (BSE), Creutzfeldt-Jakob Disease (CJD), and kuru. They are characterised by a prolonged clinically silent incubation period, variation in which is determined by many factors, including genetic background. We have used a heterogeneous stock of mice to identify Hectd2, an E3 ubiquitin ligase, as a quantitative trait gene for prion disease incubation time in mice. Further, we report an association between HECTD2 haplotypes and susceptibility to the acquired human prion diseases, vCJD and kuru. We report a genotype-associated differential expression of Hectd2 mRNA in mouse brains and human lymphocytes and a significant up-regulation of transcript in mice at the terminal stage of prion disease. Although the substrate of HECTD2 is unknown, these data highlight the importance of proteosome-directed protein degradation in neurodegeneration. This is the first demonstration of a mouse quantitative trait gene that also influences susceptibility to human prion diseases. Characterisation of such genes is key to understanding human risk and the molecular basis of incubation periods.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedades por Prión/genética , Enfermedades por Prión/veterinaria , Enfermedades de los Roedores/genética , Ubiquitina-Proteína Ligasas/genética , Adolescente , Adulto , Anciano , Animales , Células Cultivadas , Femenino , Expresión Génica , Humanos , Linfocitos/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Enfermedades por Prión/metabolismo , Sitios de Carácter Cuantitativo , Enfermedades de los Roedores/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Población Blanca/genética , Adulto Joven
16.
Nat Genet ; 54(12): 1786-1794, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36411364

RESUMEN

Alzheimer's disease (AD), the leading cause of dementia, has an estimated heritability of approximately 70%1. The genetic component of AD has been mainly assessed using genome-wide association studies, which do not capture the risk contributed by rare variants2. Here, we compared the gene-based burden of rare damaging variants in exome sequencing data from 32,558 individuals-16,036 AD cases and 16,522 controls. Next to variants in TREM2, SORL1 and ABCA7, we observed a significant association of rare, predicted damaging variants in ATP8B4 and ABCA1 with AD risk, and a suggestive signal in ADAM10. Additionally, the rare-variant burden in RIN3, CLU, ZCWPW1 and ACE highlighted these genes as potential drivers of respective AD-genome-wide association study loci. Variants associated with the strongest effect on AD risk, in particular loss-of-function variants, are enriched in early-onset AD cases. Our results provide additional evidence for a major role for amyloid-ß precursor protein processing, amyloid-ß aggregation, lipid metabolism and microglial function in AD.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Adenosina Trifosfatasas , Enfermedad de Alzheimer , Exosomas , Humanos , Adenosina Trifosfatasas/genética , Enfermedad de Alzheimer/genética , Transportador 1 de Casete de Unión a ATP/genética , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Exosomas/genética
17.
Sci Rep ; 11(1): 21506, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728711

RESUMEN

Cellular senescence is a stable cell cycle arrest that normal cells undergo after a finite number of divisions, in response to a variety of intrinsic and extrinsic stimuli. Although senescence is largely established and maintained by the p53/p21WAF1/CIP1 and pRB/p16INK4A tumour suppressor pathways, the downstream targets responsible for the stability of the growth arrest are not known. We have employed a stable senescence bypass assay in conditionally immortalised human breast fibroblasts (CL3EcoR) to investigate the role of the DREAM complex and its associated components in senescence. DREAM is a multi-subunit complex comprised of the MuvB core, containing LIN9, LIN37, LIN52, LIN54, and RBBP4, that when bound to p130, an RB1 like protein, and E2F4 inhibits cell cycle-dependent gene expression thereby arresting cell division. Phosphorylation of LIN52 at Serine 28 is required for DREAM assembly. Re-entry into the cell cycle upon phosphorylation of p130 leads to disruption of the DREAM complex and the MuvB core, associating initially to B-MYB and later to FOXM1 to form MMB and MMB-FOXM1 complexes respectively. Here we report that simultaneous expression of MMB-FOXM1 complex components efficiently bypasses senescence with LIN52, B-MYB, and FOXM1 as the crucial components. Moreover, bypass of senescence requires non-phosphorylated LIN52 that disrupts the DREAM complex, thereby indicating a central role for assembly of the DREAM complex in senescence.


Asunto(s)
Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Senescencia Celular , Fibroblastos/metabolismo , Proteína Forkhead Box M1/metabolismo , Regulación de la Expresión Génica , Complejos Multiproteicos/metabolismo , Transactivadores/metabolismo , Mama/citología , Proteínas de Ciclo Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Femenino , Fibroblastos/citología , Proteína Forkhead Box M1/genética , Humanos , Proteínas de Interacción con los Canales Kv/genética , Proteínas de Interacción con los Canales Kv/metabolismo , Complejos Multiproteicos/genética , Fosforilación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Unión a Retinoblastoma/genética , Proteínas de Unión a Retinoblastoma/metabolismo , Transactivadores/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/metabolismo
18.
Neurogenetics ; 11(2): 185-91, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19795140

RESUMEN

Prion disease incubation time in mice is determined by many factors including genetic background. The prion gene itself plays a major role in incubation time; however, other genes are also known to be important. Whilst quantitative trait loci (QTL) studies have identified multiple loci across the genome, these regions are often large, and with the exception of Hectd2 on Mmu19, no quantitative trait genes or nucleotides for prion disease incubation time have been demonstrated. In this study, we use the Northport heterogeneous stock of mice to reduce the size of a previously identified QTL on Mmu15 from approximately 25 to 1.2 cM. We further characterised the genes in this region and identify Cpne8, a member of the copine family, as the most promising candidate gene. We also show that Cpne8 mRNA is upregulated at the terminal stage of disease, supporting a role in prion disease. Applying these techniques to other loci will facilitate the identification of key pathways in prion disease pathogenesis.


Asunto(s)
Proteínas Portadoras/genética , Periodo de Incubación de Enfermedades Infecciosas , Enfermedades por Prión/genética , Sitios de Carácter Cuantitativo , Animales , Cromosomas de los Mamíferos , Ligamiento Genético , Predisposición Genética a la Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Polimorfismo de Nucleótido Simple
19.
Lancet Neurol ; 19(10): 840-848, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32949544

RESUMEN

BACKGROUND: Human prion diseases are rare and usually rapidly fatal neurodegenerative disorders, the most common being sporadic Creutzfeldt-Jakob disease (sCJD). Variants in the PRNP gene that encodes prion protein are strong risk factors for sCJD but, although the condition has similar heritability to other neurodegenerative disorders, no other genetic risk loci have been confirmed. We aimed to discover new genetic risk factors for sCJD, and their causal mechanisms. METHODS: We did a genome-wide association study of sCJD in European ancestry populations (patients diagnosed with probable or definite sCJD identified at national CJD referral centres) with a two-stage study design using genotyping arrays and exome sequencing. Conditional, transcriptional, and histological analyses of implicated genes and proteins in brain tissues, and tests of the effects of risk variants on clinical phenotypes, were done using deep longitudinal clinical cohort data. Control data from healthy individuals were obtained from publicly available datasets matched for country. FINDINGS: Samples from 5208 cases were obtained between 1990 and 2014. We found 41 genome-wide significant single nucleotide polymorphisms (SNPs) and independently replicated findings at three loci associated with sCJD risk; within PRNP (rs1799990; additive model odds ratio [OR] 1·23 [95% CI 1·17-1·30], p=2·68 × 10-15; heterozygous model p=1·01 × 10-135), STX6 (rs3747957; OR 1·16 [1·10-1·22], p=9·74 × 10-9), and GAL3ST1 (rs2267161; OR 1·18 [1·12-1·25], p=8·60 × 10-10). Follow-up analyses showed that associations at PRNP and GAL3ST1 are likely to be caused by common variants that alter the protein sequence, whereas risk variants in STX6 are associated with increased expression of the major transcripts in disease-relevant brain regions. INTERPRETATION: We present, to our knowledge, the first evidence of statistically robust genetic associations in sporadic human prion disease that implicate intracellular trafficking and sphingolipid metabolism as molecular causal mechanisms. Risk SNPs in STX6 are shared with progressive supranuclear palsy, a neurodegenerative disease associated with misfolding of protein tau, indicating that sCJD might share the same causal mechanisms as prion-like disorders. FUNDING: Medical Research Council and the UK National Institute of Health Research in part through the Biomedical Research Centre at University College London Hospitals National Health Service Foundation Trust.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/genética , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/epidemiología , Predisposición Genética a la Enfermedad/epidemiología , Humanos , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
20.
Lancet Neurol ; 8(1): 57-66, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19081515

RESUMEN

BACKGROUND: Human and animal prion diseases are under genetic control, but apart from PRNP (the gene that encodes the prion protein), we understand little about human susceptibility to bovine spongiform encephalopathy (BSE) prions, the causal agent of variant Creutzfeldt-Jakob disease (vCJD). METHODS: We did a genome-wide association study of the risk of vCJD and tested for replication of our findings in samples from many categories of human prion disease (929 samples) and control samples from the UK and Papua New Guinea (4254 samples), including controls in the UK who were genotyped by the Wellcome Trust Case Control Consortium. We also did follow-up analyses of the genetic control of the clinical phenotype of prion disease and analysed candidate gene expression in a mouse cellular model of prion infection. FINDINGS: The PRNP locus was strongly associated with risk across several markers and all categories of prion disease (best single SNP [single nucleotide polymorphism] association in vCJD p=2.5 x 10(-17); best haplotypic association in vCJD p=1 x 10(-24)). Although the main contribution to disease risk was conferred by PRNP polymorphic codon 129, another nearby SNP conferred increased risk of vCJD. In addition to PRNP, one technically validated SNP association upstream of RARB (the gene that encodes retinoic acid receptor beta) had nominal genome-wide significance (p=1.9 x 10(-7)). A similar association was found in a small sample of patients with iatrogenic CJD (p=0.030) but not in patients with sporadic CJD (sCJD) or kuru. In cultured cells, retinoic acid regulates the expression of the prion protein. We found an association with acquired prion disease, including vCJD (p=5.6 x 10(-5)), kuru incubation time (p=0.017), and resistance to kuru (p=2.5 x 10(-4)), in a region upstream of STMN2 (the gene that encodes SCG10). The risk genotype was not associated with sCJD but conferred an earlier age of onset. Furthermore, expression of Stmn2 was reduced 30-fold post-infection in a mouse cellular model of prion disease. INTERPRETATION: The polymorphic codon 129 of PRNP was the main genetic risk factor for vCJD; however, additional candidate loci have been identified, which justifies functional analyses of these biological pathways in prion disease.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/epidemiología , Síndrome de Creutzfeldt-Jakob/genética , Adulto , Edad de Inicio , Anciano , Alelos , Cromosomas Humanos/genética , ADN/genética , Interpretación Estadística de Datos , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Kuru/epidemiología , Desequilibrio de Ligamiento/genética , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Papúa Nueva Guinea/epidemiología , Polimorfismo de Nucleótido Simple , Vigilancia de la Población , Proteínas Priónicas , Priones/genética , Control de Calidad , Factores de Riesgo , Estatmina , Reino Unido/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA