Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
2.
Proc Natl Acad Sci U S A ; 120(20): e2219699120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155865

RESUMEN

Kidney organoids differentiated from pluripotent stem cells are powerful models of kidney development and disease but are characterized by cell immaturity and off-target cell fates. Comparing the cell-specific gene regulatory landscape during organoid differentiation with human adult kidney can serve to benchmark progress in differentiation at the epigenome and transcriptome level for individual organoid cell types. Using single-cell multiome and histone modification analysis, we report more broadly open chromatin in organoid cell types compared to the human adult kidney. We infer enhancer dynamics by cis-coaccessibility analysis and validate an enhancer driving transcription of HNF1B by CRISPR interference both in cultured proximal tubule cells and also during organoid differentiation. Our approach provides an experimental framework to judge the cell-specific maturation state of human kidney organoids and shows that kidney organoids can be used to validate individual gene regulatory networks that regulate differentiation.


Asunto(s)
Riñón , Multiómica , Humanos , Diferenciación Celular/genética , Células Cultivadas , Organoides/metabolismo , Análisis de la Célula Individual
3.
Proc Natl Acad Sci U S A ; 119(51): e2212810119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36508674

RESUMEN

Chromatin accessibility assays are central to the genome-wide identification of gene regulatory elements associated with transcriptional regulation. However, the data have highly variable quality arising from several biological and technical factors. To surmount this problem, we developed a sequence-based machine learning method to evaluate and refine chromatin accessibility data. Our framework, gapped k-mer SVM quality check (gkmQC), provides the quality metrics for a sample based on the prediction accuracy of the trained models. We tested 886 DNase-seq samples from the ENCODE/Roadmap projects to demonstrate that gkmQC can effectively identify "high-quality" (HQ) samples with low conventional quality scores owing to marginal read depths. Peaks identified in HQ samples are more accurately aligned at functional regulatory elements, show greater enrichment of regulatory elements harboring functional variants, and explain greater heritability of phenotypes from their relevant tissues. Moreover, gkmQC can optimize the peak-calling threshold to identify additional peaks, especially for rare cell types in single-cell chromatin accessibility data.


Asunto(s)
Cromatina , Secuencias Reguladoras de Ácidos Nucleicos , Cromatina/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN/métodos , Regulación de la Expresión Génica , Genoma
4.
Am J Physiol Renal Physiol ; 326(5): F827-F838, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38482555

RESUMEN

In the aftermath of acute kidney injury (AKI), surviving proximal tubule epithelia repopulate injured tubules to promote repair. However, a portion of cells fail to repair [termed failed-repair proximal tubule cells (FR-PTCs)] and exert ongoing proinflammatory and profibrotic effects. To better understand the molecular drivers of the FR-PTC state, we reanalyzed a mouse ischemia-reperfusion injury single-nucleus RNA-sequencing (snRNA-seq) atlas to identify Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in FR-PTCs but not in healthy or acutely injured proximal tubules after AKI (2 and 6 wk) in mice. We confirmed expression of Tnik protein in injured mouse and human tissues by immunofluorescence. Then, to determine the functional role of Tnik in FR-PTCs, we depleted TNIK with siRNA in two human renal proximal tubule epithelial cell lines (primary and immortalized hRPTECs) and analyzed each by bulk RNA-sequencing. Pathway analysis revealed significant upregulation of inflammatory signaling pathways, whereas pathways associated with differentiated proximal tubules such as organic acid transport were significantly downregulated. TNIK gene knockdown drove reduced cell viability and increased apoptosis, including differentially expressed poly(ADP-ribose) polymerase (PARP) family members, cleaved PARP-1 fragments, and increased annexin V binding to phosphatidylserine. Together, these results indicate that Tnik upregulation in FR-PTCs acts in a compensatory fashion to suppress inflammation and promote proximal tubule epithelial cell survival after injury. Modulating TNIK activity may represent a prorepair therapeutic strategy after AKI.NEW & NOTEWORTHY The molecular drivers of successful and failed repair in the proximal tubule after acute kidney injury (AKI) are incompletely understood. We identified Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in failed-repair proximal tubule cells after AKI. We tested the effect of siTNIK depletion in two proximal tubule cell lines followed by bulk RNA-sequencing analysis. Our results indicate that TNIK acts to suppress inflammatory signaling and apoptosis in injured renal proximal tubule epithelial cells to promote cell survival.


Asunto(s)
Lesión Renal Aguda , Apoptosis , Células Epiteliales , Túbulos Renales Proximales , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Animales , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Factor 2 Asociado a Receptor de TNF/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/genética , Transducción de Señal , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Línea Celular , Inflamación/metabolismo , Inflamación/patología , Masculino
5.
Kidney Int ; 105(1): 25-27, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38182297

RESUMEN

The 3-dimensional nature of chromatin architecture plays crucial roles in regulating gene expression in development, homeostasis, and disease. Until recently, however, comprehensive chromatin profiling in human kidneys has been lacking. In this issue, Eun and Kim et al. employed a multimodal approach by integrating a single-nucleus assay for transposase-accessible chromatin sequencing, chromatin immunoprecipitation sequencing, and Hi-C (a method to comprehensively detect chromatin interactions) to investigate how the epigenetic landscape is altered in diabetic kidney disease.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Cromatina/genética , Nefropatías Diabéticas/genética , Riñón , Bioensayo , Epigenómica
6.
Kidney Int ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901605

RESUMEN

Vascularization plays a critical role in organ maturation and cell type development. Drug discovery, organ mimicry, and ultimately transplantation hinge on achieving robust vascularization of in vitro engineered organs. Here, focusing on human kidney organoids, we overcame this hurdle by combining a human induced pluripotent stem cell (iPSC) line containing an inducible ETS translocation variant 2 (ETV2) (a transcription factor playing a role in endothelial cell development) that directs endothelial differentiation in vitro, with a non-transgenic iPSC line in suspension organoid culture. The resulting human kidney organoids show extensive endothelialization with a cellular identity most closely related to human kidney endothelia. Endothelialized kidney organoids also show increased maturation of nephron structures, an associated fenestrated endothelium with de novo formation of glomerular and venous subtypes, and the emergence of drug-responsive renin expressing cells. The creation of an engineered vascular niche capable of improving kidney organoid maturation and cell type complexity is a significant step forward in the path to clinical translation. Thus, incorporation of an engineered endothelial niche into a previously published kidney organoid protocol allowed the orthogonal differentiation of endothelial and parenchymal cell types, demonstrating the potential for applicability to other basic and translational organoid studies.

7.
J Am Soc Nephrol ; 34(10): 1672-1686, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37488681

RESUMEN

SIGNIFICANCE STATEMENT: HNF4 genes promote proximal tubule differentiation in mice, but their function in human nephrogenesis is not fully defined. This study uses human pluripotent stem cell (PSC)-derived kidney organoids as a model to investigate HNF4A and HNF4G functions. The loss of HNF4A , but not HNF4G , impaired reabsorption-related molecule expression and microvilli formation in human proximal tubules. Cleavage under targets and release using nuclease (CUT&RUN) sequencing and CRISPR-mediated transcriptional activation (CRISPRa) further confirm that HNF4A directly regulates its target genes. Human kidney organoids provide a good model for studying transcriptional regulation in human kidney development. BACKGROUND: The proximal tubule plays a major role in electrolyte homeostasis. Previous studies have shown that HNF4A regulates reabsorption-related genes and promotes proximal tubule differentiation during murine kidney development. However, the functions and gene regulatory mechanisms of HNF4 family genes in human nephrogenesis have not yet been investigated. METHODS: We generated HNF4A -knock out (KO), HNF4G -KO, and HNF4A/4G -double KO human pluripotent stem cell lines, differentiated each into kidney organoids, and used immunofluorescence analysis, electron microscopy, and RNA-seq to analyze them. We probed HNF4A-binding sites genome-wide by cleavage under targets and release using nuclease sequencing in both human adult kidneys and kidney organoid-derived proximal tubular cells. Clustered Regularly Interspaced Short Palindromic Repeats-mediated transcriptional activation validated HNF4A and HNF4G function in proximal tubules during kidney organoid differentiation. RESULTS: Organoids lacking HNF4A , but not HNF4G , showed reduced expression of transport-related, endocytosis-related, and brush border-related genes, as well as disorganized brush border structure in the apical lumen of the organoid proximal tubule. Cleavage under targets and release using nuclease revealed that HNF4A primarily bound promoters and enhancers of genes that were downregulated in HNF4A -KO, suggesting direct regulation. Induced expression of HNF4A or HNF4G by CRISPR-mediated transcriptional activation drove increased expression of selected target genes during kidney organoid differentiation. CONCLUSIONS: This study reveals regulatory mechanisms of HNF4A and HNF4G during human proximal tubule differentiation. The experimental strategy can be applied more broadly to investigate transcriptional regulation in human kidney development.


Asunto(s)
Redes Reguladoras de Genes , Riñón , Humanos , Ratones , Animales , Riñón/metabolismo , Túbulos Renales Proximales/metabolismo , Regulación de la Expresión Génica , Organoides/metabolismo , Factor Nuclear 4 del Hepatocito/genética
8.
J Am Soc Nephrol ; 34(4): 554-571, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36735940

RESUMEN

SIGNIFICANCE STATEMENT: Understanding the mechanisms underlying adaptive and maladaptive renal repair after AKI and their long-term consequences is critical to kidney health. The authors used lineage tracing of cycling cells and single-nucleus multiomics (profiling transcriptome and chromatin accessibility) after AKI. They demonstrated that AKI triggers a cell-cycle response in most epithelial and nonepithelial kidney cell types. They also showed that maladaptive proinflammatory proximal tubule cells (PTCs) persist until 6 months post-AKI, although they decreased in abundance over time, in part, through cell death. Single-nucleus multiomics of lineage-traced cells revealed regulatory features of adaptive and maladaptive repair. These included activation of cell state-specific transcription factors and cis-regulatory elements, and effects in PTCs even after adaptive repair, weeks after the injury event. BACKGROUND: AKI triggers a proliferative response as part of an intrinsic cellular repair program, which can lead to adaptive renal repair, restoring kidney structure and function, or maladaptive repair with the persistence of injured proximal tubule cells (PTCs) and an altered kidney structure. However, the cellular and molecular understanding of these repair programs is limited. METHODS: To examine chromatin and transcriptional responses in the same cell upon ischemia-reperfusion injury (IRI), we combined genetic fate mapping of cycling ( Ki67+ ) cells labeled early after IRI with single-nucleus multiomics-profiling transcriptome and chromatin accessibility in the same nucleus-and generated a dataset of 83,315 nuclei. RESULTS: AKI triggered a broad cell cycle response preceded by cell type-specific and global transcriptional changes in the nephron, the collecting and vascular systems, and stromal and immune cell types. We observed a heterogeneous population of maladaptive PTCs throughout proximal tubule segments 6 months post-AKI, with a marked loss of maladaptive cells from 4 weeks to 6 months. Gene expression and chromatin accessibility profiling in the same nuclei highlighted differences between adaptive and maladaptive PTCs in the activity of cis-regulatory elements and transcription factors, accompanied by corresponding changes in target gene expression. Adaptive repair was associated with reduced expression of genes encoding transmembrane transport proteins essential to kidney function. CONCLUSIONS: Analysis of genome organization and gene activity with single-cell resolution using lineage tracing and single-nucleus multiomics offers new insight into the regulation of renal injury repair. Weeks to months after mild-to-moderate IRI, maladaptive PTCs persist with an aberrant epigenetic landscape, and PTCs exhibit an altered transcriptional profile even following adaptive repair.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Humanos , Multiómica , Riñón/metabolismo , Lesión Renal Aguda/metabolismo , Daño por Reperfusión/metabolismo , Factores de Transcripción/genética , Cromatina/genética
9.
J Am Soc Nephrol ; 34(3): 394-411, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36857499

RESUMEN

SIGNIFICANCE STATEMENT: Cells undergoing necrosis release extracellular high mobility group box (HMGB)-1, which triggers sterile inflammation upon AKI in mice. Neither deletion of HMGB1 from tubular epithelial cells, nor HMGB1 antagonism with small molecules, affects initial ischemic tubular necrosis and immediate GFR loss upon unilateral ischemia/reperfusion injury (IRI). On the contrary, tubular cell-specific HMGB1 deficiency, and even late-onset pharmacological HMGB1 inhibition, increased functional and structural recovery from AKI, indicating that intracellular HMGB1 partially counters the effects of extracellular HMGB1. In vitro studies indicate that intracellular HMGB1 decreases resilience of tubular cells from prolonged ischemic stress, as in unilateral IRI. Intracellular HMGB1 is a potential target to enhance kidney regeneration and to improve long-term prognosis in AKI. BACKGROUND: Late diagnosis is a hurdle for treatment of AKI, but targeting AKI-CKD transition may improve outcomes. High mobility group box-1 (HMGB1) is a nuclear regulator of transcription and a driver of necroinflammation in AKI. We hypothesized that HMGB1 would also modulate AKI-CKD transition in other ways. METHODS: We conducted single-cell transcriptome analysis of human and mouse AKI and mouse in vivo and in vitro studies with tubular cell-specific depletion of Hmgb1 and HMGB1 antagonists. RESULTS: HMGB1 was ubiquitously expressed in kidney cells. Preemptive HMGB1 antagonism with glycyrrhizic acid (Gly) and ethyl pyruvate (EP) did not affect postischemic AKI but attenuated AKI-CKD transition in a model of persistent kidney hypoxia. Consistently, tubular Hmgb1 depletion in Pax8 rtTA, TetO Cre, Hmgb1fl/fl mice did not protect from AKI, but from AKI-CKD transition. In vitro studies confirmed that absence of HMGB1 or HMGB1 inhibition with Gly and EP does not affect ischemic necrosis of growth-arrested differentiated tubular cells but increased the resilience of cycling tubular cells that survived the acute injury to oxidative stress. This effect persisted when neutralizing extracellular HMGB1 with 2G7. Consistently, late-onset HMGB1 blockade with EP started after the peak of ischemic AKI in mice prevented AKI-CKD transition, even when 2G7 blocked extracellular HMGB1. CONCLUSION: Treatment of AKI could become feasible when ( 1 ) focusing on long-term outcomes of AKI; ( 2 ) targeting AKI-CKD transition with drugs initiated after the AKI peak; and ( 3 ) targeting with drugs that block HMGB1 in intracellular and extracellular compartments.


Asunto(s)
Lesión Renal Aguda , Proteína HMGB1 , Insuficiencia Renal Crónica , Humanos , Animales , Ratones , Riñón , Regeneración , Células Epiteliales , Estrés Oxidativo , Ácido Glicirrínico
10.
Kidney Int ; 104(1): 36-45, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37001557

RESUMEN

Preclinical tests in animal models are key steps in early drug development. Consequently, the International Society of Nephrology held a consensus meeting that connected experts in the global kidney community in order to provide guidance on optimal management of translational animal studies for the development of new drugs to treat kidney disease, entitled "TRANSFORM; TRAnslational Nephrology Science FOR new Medications." The meeting covered various themes, including the following: (i) selection of disease model; (ii) pharmacokinetics; (iii) interventions in late preclinical models; (iv) choice of animal; (v) statistical power; (vi) organoids and organ-on-a-chip models; and (vii) reporting of results. This guidance is the first to be provided on the optimal conduct of translational animal studies for the development of new drugs to treat kidney disease. These recommendations are designed to accelerate development of new drugs for efficacious treatment of kidney diseases, and to improve the prognosis and quality of life of patients with a variety of kidney diseases.


Asunto(s)
Enfermedades Renales , Nefrología , Animales , Consenso , Calidad de Vida , Sociedades Médicas , Enfermedades Renales/tratamiento farmacológico
11.
Proc Natl Acad Sci U S A ; 117(27): 15874-15883, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571916

RESUMEN

After acute kidney injury (AKI), patients either recover or alternatively develop fibrosis and chronic kidney disease. Interactions between injured epithelia, stroma, and inflammatory cells determine whether kidneys repair or undergo fibrosis, but the molecular events that drive these processes are poorly understood. Here, we use single nucleus RNA sequencing of a mouse model of AKI to characterize cell states during repair from acute injury. We identify a distinct proinflammatory and profibrotic proximal tubule cell state that fails to repair. Deconvolution of bulk RNA-seq datasets indicates that this failed-repair proximal tubule cell (FR-PTC) state can be detected in other models of kidney injury, increasing during aging in rat kidney and over time in human kidney allografts. We also describe dynamic intercellular communication networks and discern transcriptional pathways driving successful vs. failed repair. Our study provides a detailed description of cellular responses after injury and suggests that the FR-PTC state may represent a therapeutic target to improve repair.


Asunto(s)
Lesión Renal Aguda/metabolismo , Túbulos Renales Proximales/metabolismo , Riñón/metabolismo , Transcriptoma , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Aloinjertos , Animales , Modelos Animales de Enfermedad , Fibrosis , Redes Reguladoras de Genes , Humanos , Riñón/lesiones , Túbulos Renales Proximales/lesiones , Túbulos Renales Proximales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Análisis de Secuencia de ARN , Células del Estroma/metabolismo , Células del Estroma/patología
12.
Proc Natl Acad Sci U S A ; 117(40): 25026-25035, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958645

RESUMEN

In addition to their fundamental role in clearance, the kidneys release select molecules into the circulation, but whether any of these anabolic functions provides insight on kidney health is unknown. Using aptamer-based proteomics, we characterized arterial (A)-to-renal venous (V) gradients for >1,300 proteins in 22 individuals who underwent invasive sampling. Although most of the proteins that changed significantly decreased from A to V, consistent with renal clearance, several were found to increase, the most significant of which was testican-2. To assess the clinical implications of these physiologic findings, we examined proteomic data in the Jackson Heart Study (JHS), an African-American cohort (n = 1,928), with replication in the Framingham Heart Study (FHS), a White cohort (n = 1,621). In both populations, testican-2 had a strong, positive correlation with estimated glomerular filtration rate (eGFR). In addition, higher baseline testican-2 levels were associated with a lower rate of eGFR decline in models adjusted for age, gender, hypertension, type 2 diabetes, body mass index, baseline eGFR, and albuminuria. Glomerular expression of testican-2 in human kidneys was demonstrated by immunohistochemistry, immunofluorescence, and electron microscopy, while single-cell RNA sequencing of human kidneys showed expression of the cognate gene, SPOCK2, exclusively in podocytes. In vitro, testican-2 increased glomerular endothelial tube formation and motility, raising the possibility that its secretion has a functional role within the glomerulus. Taken together, our findings identify testican-2 as a podocyte-derived biomarker of kidney health and prognosis.


Asunto(s)
Biomarcadores/metabolismo , Riñón/metabolismo , Proteoglicanos/genética , Proteómica , Negro o Afroamericano/genética , Aptámeros de Péptidos , Femenino , Tasa de Filtración Glomerular/genética , Humanos , Hipertensión/genética , Hipertensión/patología , Riñón/patología , Pruebas de Función Renal , Glomérulos Renales/metabolismo , Masculino , Persona de Mediana Edad , Podocitos/metabolismo , Podocitos/patología , Proteoglicanos/metabolismo
13.
J Am Soc Nephrol ; 33(1): 15-32, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34789545

RESUMEN

Fifteen years ago, this journal published a review outlining future options for regenerating the kidney. At that time, stem cell populations were being identified in multiple tissues, the concept of stem cell recruitment to a site of injury was of great interest, and the possibility of postnatal renal stem cells was growing in momentum. Since that time, we have seen the advent of human induced pluripotent stem cells, substantial advances in our capacity to both sequence and edit the genome, global and spatial transcriptional analysis down to the single-cell level, and a pandemic that has challenged our delivery of health care to all. This article will look back over this period of time to see how our view of kidney development, disease, repair, and regeneration has changed and envision a future for kidney regeneration and repair over the next 15 years.


Asunto(s)
Enfermedades Renales/terapia , Riñón/fisiología , Regeneración/fisiología , Animales , Humanos , Enfermedades Renales/etiología , Enfermedades Renales/patología , Ratones , Trasplante de Células Madre
14.
J Am Soc Nephrol ; 33(2): 279-289, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34853151

RESUMEN

BACKGROUND: Single-cell sequencing technologies have advanced our understanding of kidney biology and disease, but the loss of spatial information in these datasets hinders our interpretation of intercellular communication networks and regional gene expression patterns. New spatial transcriptomic sequencing platforms make it possible to measure the topography of gene expression at genome depth. METHODS: We optimized and validated a female bilateral ischemia-reperfusion injury model. Using the 10× Genomics Visium Spatial Gene Expression solution, we generated spatial maps of gene expression across the injury and repair time course, and applied two open-source computational tools, Giotto and SPOTlight, to increase resolution and measure cell-cell interaction dynamics. RESULTS: An ischemia time of 34 minutes in a female murine model resulted in comparable injury to 22 minutes for males. We report a total of 16,856 unique genes mapped across our injury and repair time course. Giotto, a computational toolbox for spatial data analysis, enabled increased resolution mapping of genes and cell types. Using a seeded nonnegative matrix regression (SPOTlight) to deconvolute the dynamic landscape of cell-cell interactions, we found that injured proximal tubule cells were characterized by increasing macrophage and lymphocyte interactions even 6 weeks after injury, potentially reflecting the AKI to CKD transition. CONCLUSIONS: In this transcriptomic atlas, we defined region-specific and injury-induced loss of differentiation markers and their re-expression during repair, as well as region-specific injury and repair transcriptional responses. Lastly, we created an interactive data visualization application for the scientific community to explore these results (http://humphreyslab.com/SingleCell/).


Asunto(s)
Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Lesión Renal Aguda/fisiopatología , Animales , Comunicación Celular/genética , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/estadística & datos numéricos , Ratones , Ratones Endogámicos C57BL , RNA-Seq , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Daño por Reperfusión/fisiopatología , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/estadística & datos numéricos , Programas Informáticos
15.
Kidney Int ; 102(6): 1215-1216, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36411016

RESUMEN

Typical kidney single-cell RNA-sequencing contains relatively few leukocytes, complicating efforts to understand how immune cells impact kidney disease progression. In this issue, Fu et al. use a flow sorting strategy to generate a very large immune cell single-cell RNA-sequencing atlas in a mouse model of diabetic kidney disease. These findings highlight the importance of leukocyte cell subtypes in diabetic kidney disease.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/genética , Modelos Animales de Enfermedad , Riñón , Leucocitos , ARN
16.
Kidney Int ; 102(3): 482-491, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35788360

RESUMEN

Defining changes in gene expression during health and disease is critical for the understanding of human physiology. In recent years, single-cell/nuclei RNA sequencing (sc/snRNAseq) has revolutionized the definition and discovery of cell types and states as well as the interpretation of organ- and cell-type-specific signaling pathways. However, these advances require tissue dissociation to the level of the single cell or single nuclei level. Spatially resolved transcriptomics (SrT) now provides a platform to overcome this barrier in understanding the physiological contexts of gene expression and cellular microenvironment changes in development and disease. Some of these transcriptomic tools allow for high-resolution mapping of hundreds of genes simultaneously in cellular and subcellular compartments. Other tools offer genome depth mapping but at lower resolution. We review advances in SrT, considerations for using SrT in your own research, and applications for kidney biology.


Asunto(s)
Riñón , Transcriptoma , Microambiente Celular , Perfilación de la Expresión Génica , Humanos
17.
Kidney Int ; 102(3): 492-505, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35690124

RESUMEN

Hypertension is a major cardiovascular disease risk factor and contributor to premature death globally. Family-based investigations confirmed a significant heritable component of blood pressure (BP), whereas genome-wide association studies revealed >1000 common and rare genetic variants associated with BP and/or hypertension. The kidney is not only an organ of key relevance to BP regulation and the development of hypertension, but it also acts as the tissue mediator of genetic predisposition to hypertension. The identity of kidney genes, pathways, and related mechanisms underlying the genetic associations with BP has started to emerge through integration of genomics with kidney transcriptomics, epigenomics, and other omics as well as through applications of causal inference, such as Mendelian randomization. Single-cell methods further enabled mapping of BP-associated kidney genes to cell types, and in conjunction with other omics, started to illuminate the biological mechanisms underpinning associations of BP-associated genetic variants and kidney genes. Polygenic risk scores derived from genome-wide association studies and refined on kidney omics hold the promise of enhanced diagnostic prediction, whereas kidney omics-informed drug discovery is likely to contribute new therapeutic opportunities for hypertension and hypertension-mediated kidney damage.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hipertensión , Presión Sanguínea/genética , Predisposición Genética a la Enfermedad , Humanos , Hipertensión/genética , Riñón , Polimorfismo de Nucleótido Simple
18.
Kidney Int ; 101(5): 845-853, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35276204

RESUMEN

Acute kidney injury impacts âˆ¼13.3 million individuals and causes âˆ¼1.7 million deaths per year globally. Numerous injury pathways contribute to acute kidney injury, including cell cycle arrest, senescence, inflammation, mitochondrial dysfunction, and endothelial injury and dysfunction, and can lead to chronic inflammation and fibrosis. However, factors enabling productive repair versus nonproductive, persistent injury states remain less understood. The (Re)Building a Kidney (RBK) consortium is a National Institute of Diabetes and Digestive and Kidney Diseases consortium focused on both endogenous kidney repair mechanisms and the generation of new kidney tissue. This short review provides an update on RBK studies of endogenous nephron repair, addressing the following questions: (i) What is productive nephron repair? (ii) What are the cellular sources and drivers of repair? and (iii) How do RBK studies promote development of therapeutics? Also, we provide a guide to RBK's open access data hub for accessing, downloading, and further analyzing data sets.


Asunto(s)
Lesión Renal Aguda , Riñón , Lesión Renal Aguda/patología , Femenino , Fibrosis , Humanos , Inflamación/patología , Riñón/patología , Masculino , National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) , Regeneración , Estados Unidos
19.
Kidney Int ; 101(3): 551-562, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34843756

RESUMEN

Heart failure is frequently accompanied by kidney failure and co-incidence of these organ failures worsens the mortality in patients with heart failure. Recent clinical observations revealed that increased kidney venous pressure, rather than decreased cardiac output, causes the deterioration of kidney function in patients with heart failure. However, the underlying pathophysiology is unknown. Here, we found that decreased blood flow velocity in peritubular capillaries by kidney congestion and upregulation of endothelial nuclear factor-κB (NF-κB) signaling synergistically exacerbate kidney injury. We generated a novel mouse model with unilateral kidney congestion by constriction of the inferior vena cava between kidney veins. Intravital imaging highlighted the notable dilatation of peritubular capillaries and decreased kidney blood flow velocity in the congestive kidney. Damage after ischemia reperfusion injury was exacerbated in the congestive kidney and accumulation of polymorphonuclear leukocytes within peritubular capillaries was noted at the acute phase after injury. Similar results were obtained in vitro, in which polymorphonuclear leukocytes adhesion on activated endothelial cells was decreased in flow velocity-dependent manner but cancelled by inhibition of NF-κB signaling. Pharmacological inhibition of NF-κB for the mice subjected by both kidney congestion and ischemia reperfusion injury ameliorated the accumulation of polymorphonuclear leukocytes and subsequent exacerbation of kidney injury. Thus, our study demonstrates the importance of decreased blood flow velocity accompanying activated NF-κB signaling in aggravation of kidney injury. Hence, inhibition of NF-κB signaling may be a therapeutic candidate for the vicious cycle between heart and kidney failure with increased kidney venous pressure.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Lesión Renal Aguda/terapia , Animales , Células Endoteliales , Humanos , Riñón , Ratones , FN-kappa B , Daño por Reperfusión/complicaciones
20.
Am J Respir Crit Care Med ; 203(1): 78-89, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32673071

RESUMEN

Rationale: Idiopathic pulmonary fibrosis (IPF) is a progressive inflammatory lung disease without effective molecular markers of disease activity or treatment responses. Monocyte and interstitial macrophages that express the C-C motif CCR2 (chemokine receptor 2) are active in IPF and central to fibrosis.Objectives: To phenotype patients with IPF for potential targeted therapy, we developed 64Cu-DOTA-ECL1i, a radiotracer to noninvasively track CCR2+ monocytes and macrophages using positron emission tomography (PET).Methods: CCR2+ cells were investigated in mice with bleomycin- or radiation-induced fibrosis and in human subjects with IPF. The CCR2+ cell populations were localized relative to fibrotic regions in lung tissue and characterized using immunolocalization, single-cell mass cytometry, and Ccr2 RNA in situ hybridization and then correlated with parallel quantitation of lung uptake by 64Cu-DOTA-ECL1i PET.Measurements and Main Results: Mouse models established that increased 64Cu-DOTA-ECL1i PET uptake in the lung correlates with CCR2+ cell infiltration associated with fibrosis (n = 72). As therapeutic models, the inhibition of fibrosis by IL-1ß blockade (n = 19) or antifibrotic pirfenidone (n = 18) reduced CCR2+ macrophage accumulation and uptake of the radiotracer in mouse lungs. In lung tissues from patients with IPF, CCR2+ cells concentrated in perifibrotic regions and correlated with radiotracer localization (n = 21). Human imaging revealed little lung uptake in healthy volunteers (n = 7), whereas subjects with IPF (n = 4) exhibited intensive signals in fibrotic zones.Conclusions: These findings support a role for imaging CCR2+ cells within the fibrogenic niche in IPF to provide a molecular target for personalized therapy and monitoring.Clinical trial registered with www.clinicaltrials.gov (NCT03492762).


Asunto(s)
Biomarcadores/química , Fibrosis Pulmonar Idiopática/fisiopatología , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Macrófagos/fisiología , Monocitos/fisiología , Receptores CCR2/química , Adulto , Anciano , Anciano de 80 o más Años , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Imagen Molecular , Tomografía de Emisión de Positrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA