Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Hepatol ; 66(5): 919-929, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28126468

RESUMEN

BACKGROUND & AIMS: Chronic hepatitis C is a global health problem with an estimated 170 million hepatitis C virus (HCV) infected individuals at risk of progressive liver disease and hepatocellular carcinoma (HCC). Autotaxin (ATX, gene name: ENPP2) is a phospholipase with diverse roles in the physiological and pathological processes including inflammation and oncogenesis. Clinical studies have reported increased ATX expression in chronic hepatitis C, however, the pathways regulating ATX and its role in the viral life cycle are not well understood. METHODS: In vitro hepatocyte and ex vivo liver culture systems along with chimeric humanized liver mice and HCC tissue enabled us to assess the interplay between ATX and the HCV life cycle. RESULTS: HCV infection increased hepatocellular ATX RNA and protein expression. HCV infection stabilizes hypoxia inducible factors (HIFs) and we investigated a role for these transcription factors to regulate ATX. In vitro studies show that low oxygen increases hepatocellular ATX expression and transcriptome analysis showed a positive correlation between ATX mRNA levels and hypoxia gene score in HCC tumour tissue associated with HCV and other aetiologies. Importantly, inhibiting ATX-lysophosphatidic acid (LPA) signalling reduced HCV replication, demonstrating a positive role for this phospholipase in the viral life cycle. LPA activates phosphoinositide-3-kinase that stabilizes HIF-1α and inhibiting the HIF signalling pathway abrogates the pro-viral activity of LPA. CONCLUSIONS: Our data support a model where HCV infection increases ATX expression which supports viral replication and HCC progression. LAY SUMMARY: Chronic hepatitis C is a global health problem with infected individuals at risk of developing liver disease that can progress to hepatocellular carcinoma. Autotaxin generates the biologically active lipid lysophosphatidic acid that has been reported to play a tumorigenic role in a wide number of cancers. In this study we show that hepatitis C virus infection increases autotaxin expression via hypoxia inducible transcription factor and provides an environment in the liver that promotes fibrosis and liver injury. Importantly, we show a new role for lysophosphatidic acid in positively regulating hepatitis C virus replication.


Asunto(s)
Hepacivirus/fisiología , Hidrolasas Diéster Fosfóricas/fisiología , Receptores del Ácido Lisofosfatídico/fisiología , Replicación Viral , Animales , Línea Celular , Hepatitis C Crónica/complicaciones , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Neoplasias Hepáticas/etiología , Ratones , Hidrolasas Diéster Fosfóricas/genética , Regiones Promotoras Genéticas , ARN Mensajero/análisis , Transducción de Señal
2.
Gut ; 65(1): 112-23, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26092843

RESUMEN

OBJECTIVE: Developing a vaccine that is cross-reactive between HCV genotypes requires data on T cell antigenic targets that extends beyond genotype-1. We characterised T cell immune responses against HCV genotype-3, the most common infecting genotype in the UK and Asia, and assessed within genotype and between genotype cross-reactivity. DESIGN: T cell targets were identified in 140 subjects with either acute, chronic or spontaneously resolved HCV genotype-3 infection using (1) overlapping peptides and (2) putative human leucocyte antigens (HLA)-class-I wild type and variant epitopes through the prior assessment of polymorphic HCV genomic sites associated with host HLA, in IFNγ-ELISpot assays. CD4+/CD8+ T cell subsets were defined and viral variability at T cell targets was determined through population analysis and viral sequencing. T cell cross-reactivity between genotype-1 and genotype-3 variants was assessed. RESULTS: In resolved genotype-3 infection, T cells preferentially targeted non-structural proteins at a high magnitude, whereas in chronic disease T cells were absent or skewed to target structural proteins. Additional responses to wild type but not variant HLA predicted peptides were defined. Major sequence viral variability was observed within genotype-3 and between genotypes 1 and 3 HCV at T cell targets in resolved infection and at dominant epitopes, with limited T cell cross-reactivity between viral variants. Overall 41 CD4/CD8+ genotype-3 T cell targets were identified with minimal overlap with those described for HCV genotype-1. CONCLUSIONS: HCV T cell specificity is distinct between genotypes with limited T cell cross-reactivity in resolved and chronic disease. Therefore, viral regions targeted in natural HCV infection may not serve as attractive targets for a vaccine that aims to protect against multiple HCV genotypes.


Asunto(s)
Genotipo , Hepacivirus/genética , Antígenos de la Hepatitis C/inmunología , Hepatitis C/virología , Especificidad del Receptor de Antígeno de Linfocitos T/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Reacciones Cruzadas , Hepacivirus/inmunología , Hepatitis C/inmunología , Antígenos de la Hepatitis C/genética , Humanos , Especificidad del Receptor de Antígeno de Linfocitos T/inmunología , Vacunas contra Hepatitis Viral , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología
3.
Gut ; 61(11): 1589-99, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22337948

RESUMEN

BACKGROUND: Hepatitis C virus (HCV) genotype-3a infection is now the dominant strain in South Asia and the UK. Characteristic features include a favourable response to therapy; the reasons for this are unknown but may include distinct genotype-3a-specific T cell immunity. In contrast to genotype-1 infection, T cell immunity to this subtype is poorly defined. OBJECTIVES: The aims of the study were to (1) define the frequency, specificity and cross-reactivity of T cell immunity across the whole viral genome in genotype-3a infection and (2) assess the impact of interferon (IFN)-α/ribavirin on T cell immunity. DESIGN: T cell responses in chronic and resolved HCV genotype-3a were analysed in comparison with genotype-1 infection (total n=85) using specific peptide panels in IFN-γ ELISpot assays. T cell responses were followed longitudinally in a subset of genotype-3a infected patients receiving therapy. Responses were further defined by CD4 and CD8 subset analysis, sequencing of autologous virus and cross-reactivity of genotype-3a with genotype-1a/-1b antigens. RESULTS: CD8 T cell responses commonly targeted the non-structural (NS) proteins in chronic genotype-3a infection whereas in genotype-1 infection CD4 responses targeting HCV core predominated (p=0.0183). Resolved infection was associated with CD4 T cells targeting NS proteins. Paradoxically, a sustained response to therapy was associated with a brisk decline in virus-specific and total lymphocyte counts that recovered after treatment. CONCLUSION: HCV genotype-3a exhibits a distinct T cell specificity with implications for vaccine design. However, our data do not support the theory that genotype-3a viral clearance with therapy is associated with an enhanced antiviral T cell response. Paradoxically, a reduction in these responses may serve as a biomarker of IFN responsiveness.


Asunto(s)
Antivirales/uso terapéutico , Hepacivirus/genética , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/genética , Inmunidad Celular/inmunología , Activación de Linfocitos/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Estudios de Casos y Controles , Femenino , Genotipo , Hepacivirus/efectos de los fármacos , Hepacivirus/inmunología , Hepatitis C Crónica/inmunología , Humanos , Inmunidad Celular/genética , Interferón gamma/uso terapéutico , Estudios Longitudinales , Activación de Linfocitos/genética , Masculino , Valores de Referencia , Ribavirina/uso terapéutico , Sensibilidad y Especificidad , Especificidad del Receptor de Antígeno de Linfocitos T/genética , Especificidad del Receptor de Antígeno de Linfocitos T/inmunología
4.
J Virol ; 83(2): 1071-82, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18971279

RESUMEN

The hepatitis C virus (HCV), which currently infects an estimated 3% of people worldwide, has been present in some human populations for several centuries, notably HCV genotypes 1 and 2 in West Africa and genotype 6 in Southeast Asia. Here we use newly developed methods of sequence analysis to conduct the first comprehensive investigation of the epidemic and evolutionary history of HCV in Asia. Our analysis includes new HCV core (n = 16) and NS5B (n = 14) gene sequences, obtained from serum samples of jaundiced patients from Laos. These exceptionally diverse isolates were analyzed in conjunction with all available reference strains using phylogenetic and Bayesian coalescent methods. We performed statistical tests of phylogeographic structure and applied a recently developed "relaxed molecular clock" approach to HCV for the first time, which indicated an unexpectedly high degree of rate variation. Our results reveal a >1,000-year-long development of genotype 6 in Asia, characterized by substantial phylogeographic structure and two distinct phases of epidemic history, before and during the 20th century. We conclude that HCV lineages representing preexisting and spatially restricted strains were involved in multiple, independent local epidemics during the 20th century. Our analysis explains the generation and maintenance of HCV diversity in Asia and could provide a template for further investigations of HCV spread in other regions.


Asunto(s)
Evolución Molecular , Hepacivirus/genética , Hepatitis C/epidemiología , Hepatitis C/virología , Asia Oriental/epidemiología , Epidemiología Molecular , Filogenia , Análisis de Secuencia de ADN , Factores de Tiempo , Proteínas del Núcleo Viral/genética , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA