Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Trends Pharmacol Sci ; 45(4): 287-289, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38245492

RESUMEN

B cell leukemia/lymphoma 2 (BCL2) homology domain 3 (BH3) mimetics were reported to selectively kill senescent cells and improve age-related diseases. Defining why these cells show increased sensitivity to these molecules will help to identify new pharmacological compounds with senolytic activity. Here, we discuss how recent research findings provide new clues to understand this vulnerability.


Asunto(s)
Senescencia Celular , Humanos
2.
J Cell Biol ; 223(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38865089

RESUMEN

During aging and in some contexts, like embryonic development, wound healing, and diseases such as cancer, senescent cells accumulate and play a key role in different pathophysiological functions. A long-held belief was that cellular senescence decreased normal cell functions, given the loss of proliferation of senescent cells. This view radically changed following the discovery of the senescence-associated secretory phenotype (SASP), factors released by senescent cells into their microenvironment. There is now accumulating evidence that cellular senescence also promotes gain-of-function effects by establishing, reinforcing, or changing cell identity, which can have a beneficial or deleterious impact on pathophysiology. These effects may involve both proliferation arrest and autocrine SASP production, although they largely remain to be defined. Here, we provide a historical overview of the first studies on senescence and an insight into emerging trends regarding the effects of senescence on cell identity.


Asunto(s)
Senescencia Celular , Fenotipo Secretor Asociado a la Senescencia , Humanos , Fenotipo Secretor Asociado a la Senescencia/genética , Animales , Proliferación Celular
3.
NPJ Aging ; 10(1): 5, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216569

RESUMEN

Cellular senescence is a cell program induced by various stresses that leads to a stable proliferation arrest and to a senescence-associated secretory phenotype. Accumulation of senescent cells during age-related diseases participates in these pathologies and regulates healthy lifespan. Recent evidences point out a global dysregulated intracellular metabolism associated to senescence phenotype. Nonetheless, the functional contribution of metabolic homeostasis in regulating senescence is barely understood. In this work, we describe how the mevalonate pathway, an anabolic pathway leading to the endogenous biosynthesis of poly-isoprenoids, such as cholesterol, acts as a positive regulator of cellular senescence in normal human cells. Mechanistically, this mevalonate pathway-induced senescence is partly mediated by the downstream cholesterol biosynthetic pathway. This pathway promotes the transcriptional activity of ERRα that could lead to dysfunctional mitochondria, ROS production, DNA damage and a p53-dependent senescence. Supporting the relevance of these observations, increase of senescence in liver due to a high-fat diet regimen is abrogated in ERRα knockout mouse. Overall, this work unravels the role of cholesterol biosynthesis or level in the induction of an ERRα-dependent mitochondrial program leading to cellular senescence and related pathological alterations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA