Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.133
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(7): 1149-1160, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37202489

RESUMEN

B cell zone reticular cells (BRCs) form stable microenvironments that direct efficient humoral immunity with B cell priming and memory maintenance being orchestrated across lymphoid organs. However, a comprehensive understanding of systemic humoral immunity is hampered by the lack of knowledge of global BRC sustenance, function and major pathways controlling BRC-immune cell interactions. Here we dissected the BRC landscape and immune cell interactome in human and murine lymphoid organs. In addition to the major BRC subsets underpinning the follicle, including follicular dendritic cells, PI16+ RCs were present across organs and species. As well as BRC-produced niche factors, immune cell-driven BRC differentiation and activation programs governed the convergence of shared BRC subsets, overwriting tissue-specific gene signatures. Our data reveal that a canonical set of immune cell-provided cues enforce bidirectional signaling programs that sustain functional BRC niches across lymphoid organs and species, thereby securing efficient humoral immunity.


Asunto(s)
Linfocitos B , Células del Estroma , Ratones , Humanos , Animales , Inmunidad Humoral , Células Dendríticas Foliculares , Homeostasis
2.
Nat Immunol ; 24(7): 1138-1148, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37202490

RESUMEN

Fibroblastic reticular cells (FRCs) direct the interaction and activation of immune cells in discrete microenvironments of lymphoid organs. Despite their important role in steering innate and adaptive immunity, the age- and inflammation-associated changes in the molecular identity and functional properties of human FRCs have remained largely unknown. Here, we show that human tonsillar FRCs undergo dynamic reprogramming during life and respond vigorously to inflammatory perturbation in comparison to other stromal cell types. The peptidase inhibitor 16 (PI16)-expressing reticular cell (PI16+ RC) subset of adult tonsils exhibited the strongest inflammation-associated structural remodeling. Interactome analysis combined with ex vivo and in vitro validation revealed that T cell activity within subepithelial niches is controlled by distinct molecular pathways during PI16+ RC-lymphocyte interaction. In sum, the topological and molecular definition of the human tonsillar stromal cell landscape reveals PI16+ RCs as a specialized FRC niche at the core of mucosal immune responses in the oropharynx.


Asunto(s)
Tonsila Palatina , Linfocitos T , Humanos , Fibroblastos , Linfocitos/metabolismo , Inflamación/metabolismo , Proteínas Portadoras/metabolismo , Glicoproteínas/metabolismo
3.
Nat Immunol ; 22(4): 510-519, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33707780

RESUMEN

Fibroblastic reticular cells (FRCs) determine the organization of lymphoid organs and control immune cell interactions. While the cellular and molecular mechanisms underlying FRC differentiation in lymph nodes and the splenic white pulp have been elaborated to some extent, in Peyer's patches (PPs) they remain elusive. Using a combination of single-cell transcriptomics and cell fate mapping in advanced mouse models, we found that PP formation in the mouse embryo is initiated by an expansion of perivascular FRC precursors, followed by FRC differentiation from subepithelial progenitors. Single-cell transcriptomics and cell fate mapping confirmed the convergence of perivascular and subepithelial FRC lineages. Furthermore, lineage-specific loss- and gain-of-function approaches revealed that the two FRC lineages synergistically direct PP organization, maintain intestinal microbiome homeostasis and control anticoronavirus immune responses in the gut. Collectively, this study reveals a distinct mosaic patterning program that generates key stromal cell infrastructures for the control of intestinal immunity.


Asunto(s)
Linaje de la Célula , Fibroblastos/inmunología , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Intestino Delgado/inmunología , Ganglios Linfáticos Agregados/inmunología , Animales , Comunicación Celular , Células Cultivadas , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Microbioma Gastrointestinal , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Interacciones Huésped-Patógeno , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/virología , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Intestino Delgado/virología , Ratones Endogámicos C57BL , Ratones Noqueados , Virus de la Hepatitis Murina/inmunología , Virus de la Hepatitis Murina/patogenicidad , Ganglios Linfáticos Agregados/metabolismo , Ganglios Linfáticos Agregados/microbiología , Ganglios Linfáticos Agregados/virología , Fenotipo , Análisis de la Célula Individual , Transcriptoma
4.
Nat Immunol ; 22(8): 1042-1051, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34267375

RESUMEN

Pathogens and vaccines that produce persisting antigens can generate expanded pools of effector memory CD8+ T cells, described as memory inflation. While properties of inflating memory CD8+ T cells have been characterized, the specific cell types and tissue factors responsible for their maintenance remain elusive. Here, we show that clinically applied adenovirus vectors preferentially target fibroblastic stromal cells in cultured human tissues. Moreover, we used cell-type-specific antigen targeting to define critical cells and molecules that sustain long-term antigen presentation and T cell activity after adenovirus vector immunization in mice. While antigen targeting to myeloid cells was insufficient to activate antigen-specific CD8+ T cells, genetic activation of antigen expression in Ccl19-cre-expressing fibroblastic stromal cells induced inflating CD8+ T cells. Local ablation of vector-targeted cells revealed that lung fibroblasts support the protective function and metabolic fitness of inflating memory CD8+ T cells in an interleukin (IL)-33-dependent manner. Collectively, these data define a critical fibroblastic niche that underpins robust protective immunity operating in a clinically important vaccine platform.


Asunto(s)
Adenoviridae/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Interleucina-33/inmunología , Activación de Linfocitos/inmunología , Células del Estroma/inmunología , Adenoviridae/genética , Animales , Línea Celular Tumoral , Quimiocina CCL19/metabolismo , Quimera/genética , Epítopos de Linfocito T/inmunología , Fibroblastos/citología , Fibroblastos/metabolismo , Vectores Genéticos/inmunología , Humanos , Pulmón/citología , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vacunación
5.
Nat Immunol ; 21(6): 649-659, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32424359

RESUMEN

Efficient generation of germinal center (GC) responses requires directed movement of B cells between distinct microenvironments underpinned by specialized B cell-interacting reticular cells (BRCs). How BRCs are reprogrammed to cater to the developing GC remains unclear, and studying this process is largely hindered by incomplete resolution of the cellular composition of the B cell follicle. Here we used genetic targeting of Cxcl13-expressing cells to define the molecular identity of the BRC landscape. Single-cell transcriptomic analysis revealed that BRC subset specification was predetermined in the primary B cell follicle. Further topological remodeling of light and dark zone follicular dendritic cells required CXCL12-dependent crosstalk with B cells and dictated GC output by retaining B cells in the follicle and steering their interaction with follicular helper T cells. Together, our results reveal that poised BRC-defined microenvironments establish a feed-forward system that determines the efficacy of the GC reaction.


Asunto(s)
Oscuridad , Células Dendríticas Foliculares/inmunología , Células Dendríticas Foliculares/metabolismo , Centro Germinal/inmunología , Centro Germinal/metabolismo , Inmunomodulación/efectos de la radiación , Luz , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores , Comunicación Celular , Quimiocina CXCL12/metabolismo , Ratones , Ratones Transgénicos , Fenotipo , Análisis de la Célula Individual , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
6.
Immunity ; 52(5): 794-807.e7, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32298648

RESUMEN

Lymphocyte homeostasis and immune surveillance require that T and B cells continuously recirculate between secondary lymphoid organs. Here, we used intravital microscopy to define lymphocyte trafficking routes within the spleen, an environment of open blood circulation and shear forces unlike other lymphoid organs. Upon release from arterioles into the red pulp sinuses, T cells latched onto perivascular stromal cells in a manner that was independent of the chemokine receptor CCR7 but sensitive to Gi protein-coupled receptor inhibitors. This latching sheltered T cells from blood flow and enabled unidirectional migration to the bridging channels and then to T zones, entry into which required CCR7. Inflammatory responses modified the chemotactic cues along the perivascular homing paths, leading to rapid block of entry. Our findings reveal a role for vascular structures in lymphocyte recirculation through the spleen, indicating the existence of separate entry and exit routes and that of a checkpoint located at the gate to the T zone.


Asunto(s)
Movimiento Celular/inmunología , Receptores CCR7/inmunología , Bazo/inmunología , Linfocitos T/inmunología , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Humanos , Vigilancia Inmunológica/inmunología , Microscopía Intravital , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Linfocitos/citología , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores CCR7/genética , Receptores CCR7/metabolismo , Transducción de Señal/inmunología , Bazo/citología , Bazo/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo
7.
Immunity ; 53(5): 1015-1032.e8, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33207209

RESUMEN

Solitary intestinal lymphoid tissues such as cryptopatches (CPs) and isolated lymphoid follicles (ILFs) constitute steady-state activation hubs containing group 3 innate lymphoid cells (ILC3) that continuously produce interleukin (IL)-22. The outer surface of CPs and ILFs is demarcated by a poorly characterized population of CD11c+ cells. Using genome-wide single-cell transcriptional profiling of intestinal mononuclear phagocytes and multidimensional flow cytometry, we found that CP- and ILF-associated CD11c+ cells were a transcriptionally distinct subset of intestinal cDCs, which we term CIA-DCs. CIA-DCs required programming by CP- and ILF-resident CCR6+ ILC3 via lymphotoxin-ß receptor signaling in cDCs. CIA-DCs differentially expressed genes associated with immunoregulation and were the major cellular source of IL-22 binding protein (IL-22BP) at steady state. Mice lacking CIA-DC-derived IL-22BP exhibited diminished expression of epithelial lipid transporters, reduced lipid resorption, and changes in body fat homeostasis. Our findings provide insight into the design principles of an immunoregulatory checkpoint controlling nutrient absorption.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Inmunidad Innata , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Ganglios Linfáticos Agregados/citología , Ganglios Linfáticos Agregados/inmunología , Receptores de Interleucina/biosíntesis , Animales , Biomarcadores , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Inmunofenotipificación , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Metabolismo de los Lípidos , Ratones , Ratones Transgénicos , ARN Citoplasmático Pequeño/genética , Receptores de Interleucina/genética , Transducción de Señal
8.
Nat Immunol ; 17(12): 1388-1396, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27798617

RESUMEN

Fibroblastic reticular cells (FRCs) of secondary lymphoid organs form distinct niches for interaction with hematopoietic cells. We found here that production of the cytokine IL-15 by FRCs was essential for the maintenance of group 1 innate lymphoid cells (ILCs) in Peyer's patches and mesenteric lymph nodes. Moreover, FRC-specific ablation of the innate immunological sensing adaptor MyD88 unleashed IL-15 production by FRCs during infection with an enteropathogenic virus, which led to hyperactivation of group 1 ILCs and substantially altered the differentiation of helper T cells. Accelerated clearance of virus by group 1 ILCs precipitated severe intestinal inflammatory disease with commensal dysbiosis, loss of intestinal barrier function and diminished resistance to colonization. In sum, FRCs act as an 'on-demand' immunological 'rheostat' by restraining activation of group 1 ILCs and thereby preventing immunopathological damage in the intestine.


Asunto(s)
Citrobacter rodentium/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Enterobacteriaceae/inmunología , Fibroblastos/inmunología , Interleucina-15/metabolismo , Linfocitos/inmunología , Virus de la Hepatitis Murina/inmunología , Animales , Células Cultivadas , Inmunidad Innata , Ganglios Linfáticos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Ganglios Linfáticos Agregados/patología , Células TH1/inmunología , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo
9.
Immunity ; 48(1): 120-132.e8, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29343433

RESUMEN

Group 3 innate lymphoid cells (ILC3s) sense environmental signals and are critical for tissue integrity in the intestine. Yet, which signals are sensed and what receptors control ILC3 function remain poorly understood. Here, we show that ILC3s with a lymphoid-tissue-inducer (LTi) phenotype expressed G-protein-coupled receptor 183 (GPR183) and migrated to its oxysterol ligand 7α,25-hydroxycholesterol (7α,25-OHC). In mice lacking Gpr183 or 7α,25-OHC, ILC3s failed to localize to cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Gpr183 deficiency in ILC3s caused a defect in CP and ILF formation in the colon, but not in the small intestine. Localized oxysterol production by fibroblastic stromal cells provided an essential signal for colonic lymphoid tissue development, and inflammation-induced increased oxysterol production caused colitis through GPR183-mediated cell recruitment. Our findings show that GPR183 promotes lymphoid organ development and indicate that oxysterol-GPR183-dependent positioning within tissues controls ILC3 activity and intestinal homeostasis.


Asunto(s)
Colitis/metabolismo , Linfocitos/metabolismo , Tejido Linfoide/metabolismo , Oxiesteroles/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Movimiento Celular/genética , Colitis/inmunología , Colitis/patología , Colon/inmunología , Colon/patología , Citocinas/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ligandos , Linfocitos/patología , Tejido Linfoide/patología , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal
10.
Nature ; 596(7873): 525-530, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34433941

RESUMEN

Lithium-ion batteries (LIBs) are widely used in applications ranging from electric vehicles to wearable devices. Before the invention of secondary LIBs, the primary lithium-thionyl chloride (Li-SOCl2) battery was developed in the 1970s using SOCl2 as the catholyte, lithium metal as the anode and amorphous carbon as the cathode1-7. This battery discharges by lithium oxidation and catholyte reduction to sulfur, sulfur dioxide and lithium chloride, is well known for its high energy density and is widely used in real-world applications; however, it has not been made rechargeable since its invention8-13. Here we show that with a highly microporous carbon positive electrode, a starting electrolyte composed of aluminium chloride in SOCl2 with fluoride-based additives, and either sodium or lithium as the negative electrode, we can produce a rechargeable Na/Cl2 or Li/Cl2 battery operating via redox between mainly Cl2/Cl- in the micropores of carbon and Na/Na+ or Li/Li+ redox on the sodium or lithium metal. The reversible Cl2/NaCl or Cl2/LiCl redox in the microporous carbon affords rechargeability at the positive electrode side and the thin alkali-fluoride-doped alkali-chloride solid electrolyte interface stabilizes the negative electrode, both are critical to secondary alkali-metal/Cl2 batteries.

11.
Proc Natl Acad Sci U S A ; 121(25): e2305260121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857398

RESUMEN

Human Cep57 is a coiled-coil scaffold at the pericentriolar matrix (PCM), controlling centriole duplication and centrosome maturation for faithful cell division. Genetic truncation mutations of Cep57 are associated with the mosaic-variegated aneuploidy (MVA) syndrome. During interphase, Cep57 forms a complex with Cep63 and Cep152, serving as regulators for centrosome maturation. However, the molecular interplay of Cep57 with these essential scaffolding proteins remains unclear. Here, we demonstrate that Cep57 undergoes liquid-liquid phase separation (LLPS) driven by three critical domains (NTD, CTD, and polybasic LMN). In vitro Cep57 condensates catalyze microtubule nucleation via the LMN motif-mediated tubulin concentration. In cells, the LMN motif is required for centrosomal microtubule aster formation. Moreover, Cep63 restricts Cep57 assembly, expansion, and microtubule polymerization activity. Overexpression of competitive constructs for multivalent interactions, including an MVA mutation, leads to excessive centrosome duplication. In Cep57-depleted cells, self-assembly mutants failed to rescue centriole disengagement and PCM disorganization. Thus, Cep57's multivalent interactions are pivotal for maintaining the accurate structural and functional integrity of human centrosomes.


Asunto(s)
Centrosoma , Proteínas Asociadas a Microtúbulos , Microtúbulos , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Centriolos/metabolismo , Centriolos/genética , Centrosoma/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Mutación , Proteínas Nucleares , Unión Proteica , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética
12.
Immunity ; 47(1): 80-92.e4, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28709801

RESUMEN

Lymph nodes (LNs) are strategically situated throughout the body at junctures of the blood vascular and lymphatic systems to direct immune responses against antigens draining from peripheral tissues. The current paradigm describes LN development as a programmed process that is governed through the interaction between mesenchymal lymphoid tissue organizer (LTo) cells and hematopoietic lymphoid tissue inducer (LTi) cells. Using cell-type-specific ablation of key molecules involved in lymphoid organogenesis, we found that initiation of LN development is dependent on LTi-cell-mediated activation of lymphatic endothelial cells (LECs) and that engagement of mesenchymal stromal cells is a succeeding event. LEC activation was mediated mainly by signaling through receptor activator of NF-κB (RANK) and the non-canonical NF-κB pathway and was steered by sphingosine-1-phosphate-receptor-dependent retention of LTi cells in the LN anlage. Finally, the finding that pharmacologically enforced interaction between LTi cells and LECs promotes ectopic LN formation underscores the central LTo function of LECs.


Asunto(s)
Células Endoteliales/fisiología , Ganglios Linfáticos/fisiología , Células Madre Mesenquimatosas/fisiología , Organogénesis , Animales , Diferenciación Celular , Células Cultivadas , Coristoma , Embrión de Mamíferos , Receptor beta de Linfotoxina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal
13.
Immunol Rev ; 306(1): 108-122, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34866192

RESUMEN

Fibroblastic reticular cells (FRCs) are specialized stromal cells of lymphoid organs that generate the structural foundation of the tissue and actively interact with immune cells. Distinct FRC subsets position lymphocytes and myeloid cells in specialized niches where they present processed or native antigen and provide essential growth factors and cytokines for immune cell activation and differentiation. Niche-specific functions of FRC subpopulations have been defined using genetic targeting, high-dimensional transcriptomic analyses, and advanced imaging methods. Here, we review recent findings on FRC-immune cell interaction and the elaboration of FRC development and differentiation. We discuss how imaging approaches have not only shaped our understanding of FRC biology, but have critically advanced the niche concept of immune cell maintenance and control of immune reactivity.


Asunto(s)
Fibroblastos , Células del Estroma , Comunicación Celular , Diferenciación Celular , Perfilación de la Expresión Génica , Humanos , Ganglios Linfáticos
14.
Plant Physiol ; 195(4): 2533-2541, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38687886

RESUMEN

Humans select vegetable crops with desirable traits via a complex evolutionary process called domestication, generating a variety of cultivars worldwide. With advances in sequencing technologies, genomic scans for "signatures of selection" are widely used to identify target loci of selection. In the early phases of domestication, humans tended to favor similar sets of phenotypes in diverse crops, resulting in "domestication syndrome" and parallel evolution in multiple species. Subsequently, adaptation to distinct environments or different consumer preferences has diversified crop cultivars. Here, we review molecular and population genetic studies on genes affecting trait evolution during this complex process. We emphasize that, depending on interactions among different types of selection (directional selection within or divergent selection between groups), the genetic architecture of the target trait (Mendelian or polygenic), and the origin of the causal variant (new mutation or standing variation), the resulting molecular patterns of variation can be highly diverse. Situations in which the typical hard selective sweep model could be applied may be limited. Therefore, it is crucial to obtain a thorough understanding of the target species' historical, environmental, and ecological contexts.


Asunto(s)
Productos Agrícolas , Domesticación , Variación Genética , Selección Genética , Productos Agrícolas/genética , Verduras/genética , Fenotipo
15.
J Immunol ; 210(6): 774-785, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36715496

RESUMEN

Hallmarks of life-threatening, coronavirus-induced disease include dysregulated antiviral immunity and immunopathological tissue injury. Nevertheless, the sampling of symptomatic patients overlooks the initial inflammatory sequela culminating in severe coronavirus-induced disease, leaving a fundamental gap in our understanding of the early mechanisms regulating anticoronavirus immunity and preservation of tissue integrity. In this study, we delineate the innate regulators controlling pulmonary infection using a natural mouse coronavirus. Within hours of infection, the cellular landscape of the lung was transcriptionally remodeled altering host metabolism, protein synthesis, and macrophage maturation. Genetic perturbation revealed that these transcriptional programs were type I IFN dependent and critically controlled both host cell survival and viral spread. Unrestricted viral replication overshooting protective IFN responses culminated in increased IL-1ß and alarmin production and triggered compensatory neutrophilia, interstitial inflammation, and vascular injury. Thus, type I IFNs critically regulate early viral burden, which serves as an innate checkpoint determining the trajectory of coronavirus dissemination and immunopathology.


Asunto(s)
Infecciones por Coronavirus , Interferón Tipo I , Virus de la Hepatitis Murina , Neumonía , Animales , Ratones , Inmunidad Innata , Antivirales/farmacología , Replicación Viral
16.
Artículo en Inglés | MEDLINE | ID: mdl-38626354

RESUMEN

RATIONALE: Immune checkpoint inhibitor-related pneumonitis is a serious autoimmune event affecting up to 20% of patients with non-small cell lung cancer, yet the factors underpinning its development in some patients and not others are poorly understood. OBJECTIVES: To investigate the role of autoantibodies and autoreactive T cells against surfactant-related proteins in the development of pneumonitis. METHODS: The study cohort consisted of non-small cell lung cancer patients who gave blood samples before and during immune checkpoint inhibitor treatment. Serum was used for proteomics analyses and to detect autoantibodies present during pneumonitis. T cell stimulation assays and single-cell RNA sequencing were performed to investigate the specificity and functionality of peripheral autoreactive T cells. The findings were confirmed in a validation cohort comprising patients with non-small cell lung cancer and patients with melanoma. MEASUREMENTS AND MAIN RESULTS: Across both cohorts, patients who developed pneumonitis had higher pre-treatment levels of immunoglobulin G autoantibodies targeting surfactant protein-B. At the onset of pneumonitis, these patients also exhibited higher frequencies of CD4+ interferon-gamma-positive surfactant protein B-specific T cells, and expanding T cell clonotypes recognizing this protein, accompanied by a pro-inflammatory serum proteomic profile. CONCLUSIONS: Our data suggest that the co-occurrence of surfactant protein-B-specific immunoglobulin G autoantibodies and CD4+ T cells is associated with the development of pneumonitis during ICI therapy. Pre-treatment levels of these antibodies may represent a potential biomarker for elevated risk of developing pneumonitis and on-treatment levels may provide a diagnostic aid. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

17.
J Allergy Clin Immunol ; 154(2): 325-339.e3, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38494093

RESUMEN

BACKGROUND: Chronic rhinosinusitis (CRS) is a common inflammatory condition affecting the nasal and paranasal sinus mucosa, often accompanied by olfactory dysfunction. Eosinophilic CRS with nasal polyps (ECRSwNP) is a subtype of CRS characterized by eosinophilic infiltration. Animal models for ECRSwNP with olfactory dysfunction are necessary for exploring potential therapeutic strategies. OBJECTIVE: The aim of this study was to establish a mouse model of ECRSwNP combined with olfactory dysfunction in a shorter time frame using intranasal ovalbumin and Aspergillus protease (AP) administration. The efficacy of the model was validated by evaluating sinonasal inflammation, cytokine levels, olfactory function, and neuroinflammation in the olfactory bulb. METHODS: Male BALB/c mice were intranasally administered ovalbumin and AP for 6 and 12 weeks to induce ECRSwNP. The resultant ECRSwNP mouse model underwent histologic assessment, cytokine analysis of nasal lavage fluid, olfactory behavioral tests, and gene expression profiling to identify neuroinflammatory markers within the olfactory bulb. RESULTS: The developed mouse model exhibited substantial eosinophil infiltration, increased levels of inflammatory cytokines in nasal lavage fluid, and confirmed olfactory dysfunction through behavioral assays. Furthermore, olfactory bulb inflammation and reduced mature olfactory sensory neurons were observed in the model. CONCLUSION: This study successfully established a validated mouse model of ECRSwNP with olfactory dysfunction within a remarkably short span of 6 weeks, providing a valuable tool for investigating the pathogenesis and potential therapies for this condition. The model offers an efficient approach for future research in CRS with nasal polyps and olfactory dysfunction.


Asunto(s)
Modelos Animales de Enfermedad , Eosinofilia , Pólipos Nasales , Trastornos del Olfato , Rinosinusitis , Animales , Masculino , Ratones , Enfermedad Crónica , Citocinas/metabolismo , Eosinofilia/inmunología , Eosinófilos/inmunología , Eosinófilos/patología , Ratones Endogámicos BALB C , Pólipos Nasales/inmunología , Pólipos Nasales/patología , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/etiología , Trastornos del Olfato/etiología , Trastornos del Olfato/patología , Bulbo Olfatorio/patología , Bulbo Olfatorio/inmunología , Ovalbúmina/inmunología , Rinosinusitis/inmunología , Rinosinusitis/patología
18.
Emerg Infect Dis ; 30(3): 478-489, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295401

RESUMEN

Taiwan provided several COVID-19 vaccine platforms: mRNA (BNT162b2, mRNA-1273), adenoviral vector-based (AZD1222), and protein subunit (MVC-COV1901). After Taiwan shifted from its zero-COVID strategy in April 2022, population-based evaluation of vaccine effectiveness (VE) became possible. We conducted an observational cohort study of 21,416,151 persons to examine VE against SARS-CoV-2 infection, moderate and severe illness, and death during March 22, 2021-September 30, 2022. After adjusting for age and sex, we found that persons who completed 3 vaccine doses (2 primary, 1 booster) or received MVC-COV1901 as the primary series had the lowest hospitalization incidence (0.04-0.20 cases/100,000 person-days). We also found 95.8% VE against hospitalization for 3 doses of BNT162b2, 91.0% for MVC-COV1901, 81.8% for mRNA-1273, and 65.7% for AZD1222, which had the lowest overall VE. Our findings indicated that protein subunit vaccines provide similar protection against SARS-CoV-2---associated hospitalization as mRNA vaccines and can inform mix-and-match vaccine selection in other countries.


Asunto(s)
COVID-19 , Humanos , Vacuna nCoV-2019 mRNA-1273 , Vacuna BNT162 , ChAdOx1 nCoV-19 , Estudios de Cohortes , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , SARS-CoV-2/genética , Taiwán/epidemiología , Eficacia de las Vacunas , Masculino , Femenino
19.
Gastroenterology ; 165(2): 429-444.e15, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36906044

RESUMEN

BACKGROUND & AIMS: Patients with colon cancer with liver metastases may be cured with surgery, but the presence of additional lung metastases often precludes curative treatment. Little is known about the processes driving lung metastasis. This study aimed to elucidate the mechanisms governing lung vs liver metastasis formation. METHODS: Patient-derived organoid (PDO) cultures were established from colon tumors with distinct patterns of metastasis. Mouse models recapitulating metastatic organotropism were created by implanting PDOs into the cecum wall. Optical barcoding was applied to trace the origin and clonal composition of liver and lung metastases. RNA sequencing and immunohistochemistry were used to identify candidate determinants of metastatic organotropism. Genetic, pharmacologic, in vitro, and in vivo modeling strategies identified essential steps in lung metastasis formation. Validation was performed by analyzing patient-derived tissues. RESULTS: Cecum transplantation of 3 distinct PDOs yielded models with distinct metastatic organotropism: liver only, lung only, and liver and lung. Liver metastases were seeded by single cells derived from select clones. Lung metastases were seeded by polyclonal clusters of tumor cells entering the lymphatic vasculature with very limited clonal selection. Lung-specific metastasis was associated with high expression of desmosome markers, including plakoglobin. Plakoglobin deletion abrogated tumor cell cluster formation, lymphatic invasion, and lung metastasis formation. Pharmacologic inhibition of lymphangiogenesis attenuated lung metastasis formation. Primary human colon, rectum, esophagus, and stomach tumors with lung metastases had a higher N-stage and more plakoglobin-expressing intra-lymphatic tumor cell clusters than those without lung metastases. CONCLUSIONS: Lung and liver metastasis formation are fundamentally distinct processes with different evolutionary bottlenecks, seeding entities, and anatomic routing. Polyclonal lung metastases originate from plakoglobin-dependent tumor cell clusters entering the lymphatic vasculature at the primary tumor site.


Asunto(s)
Neoplasias del Colon , Neoplasias Hepáticas , Neoplasias Pulmonares , Ratones , Animales , Humanos , gamma Catenina/metabolismo , Neoplasias Pulmonares/patología , Neoplasias del Colon/genética , Neoplasias Hepáticas/patología
20.
Eur J Immunol ; 53(9): e2250355, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36991561

RESUMEN

The lymph node (LN) is home to resident macrophage populations that are essential for immune function and homeostasis, but key factors controlling this niche are undefined. Here, we show that fibroblastic reticular cells (FRCs) are an essential component of the LN macrophage niche. Genetic ablation of FRCs caused rapid loss of macrophages and monocytes from LNs across two in vivo models. Macrophages co-localized with FRCs in human LNs, and murine single-cell RNA-sequencing revealed that FRC subsets broadly expressed master macrophage regulator CSF1. Functional assays containing purified FRCs and monocytes showed that CSF1R signaling was sufficient to support macrophage development. These effects were conserved between mouse and human systems. These data indicate an important role for FRCs in maintaining the LN parenchymal macrophage niche.


Asunto(s)
Fibroblastos , Transducción de Señal , Ratones , Humanos , Animales , Macrófagos , Ganglios Linfáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA