RESUMEN
BACKGROUND: Pulmonary arterial hypertension (PAH) is high blood pressure in the lungs that originates from structural changes in small resistance arteries. A defining feature of PAH is the inappropriate remodeling of pulmonary arteries (PA) leading to right ventricle failure and death. Although treatment of PAH has improved, the long-term prognosis for patients remains poor, and more effective targets are needed. METHODS: Gene expression was analyzed by microarray, RNA sequencing, quantitative polymerase chain reaction, Western blotting, and immunostaining of lung and isolated PA in multiple mouse and rat models of pulmonary hypertension (PH) and human PAH. PH was assessed by digital ultrasound, hemodynamic measurements, and morphometry. RESULTS: Microarray analysis of the transcriptome of hypertensive rat PA identified a novel candidate, PBK (PDZ-binding kinase), that was upregulated in multiple models and species including humans. PBK is a serine/threonine kinase with important roles in cell proliferation that is minimally expressed in normal tissues but significantly increased in highly proliferative tissues. PBK was robustly upregulated in the medial layer of PA, where it overlaps with markers of smooth muscle cells. Gain-of-function approaches show that active forms of PBK increase PA smooth muscle cell proliferation, whereas silencing PBK, dominant negative PBK, and pharmacological inhibitors of PBK all reduce proliferation. Pharmacological inhibitors of PBK were effective in PH reversal strategies in both mouse and rat models, providing translational significance. In a complementary genetic approach, PBK was knocked out in rats using CRISPR/Cas9 editing, and loss of PBK prevented the development of PH. We found that PBK bound to PRC1 (protein regulator of cytokinesis 1) in PA smooth muscle cells and that multiple genes involved in cytokinesis were upregulated in experimental models of PH and human PAH. Active PBK increased PRC1 phosphorylation and supported cytokinesis in PA smooth muscle cells, whereas silencing or dominant negative PBK reduced cytokinesis and the number of cells in the G2/M phase of the cell cycle. CONCLUSIONS: PBK is a newly described target for PAH that is upregulated in proliferating PA smooth muscle cells, where it contributes to proliferation through changes in cytokinesis and cell cycle dynamics to promote medial thickening, fibrosis, increased PA resistance, elevated right ventricular systolic pressure, right ventricular remodeling, and PH.
Asunto(s)
Hipertensión Arterial Pulmonar , Arteria Pulmonar , Remodelación Vascular , Animales , Humanos , Ratas , Ratones , Masculino , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/fisiopatología , Hipertensión Arterial Pulmonar/patología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Proliferación Celular , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Quinasas de Proteína Quinasa Activadas por MitógenosRESUMEN
Infection of lung endothelial cells with pneumococci activates the superoxide-generating enzyme NADPH oxidase 2 (NOX2), involving the pneumococcal virulence factor pneumolysin (PLY). Excessive NOX2 activity disturbs capillary barriers, but its global inhibition can impair bactericidal phagocyte activity during pneumococcal pneumonia. Depletion of the α subunit of the epithelial sodium channel (ENaC) in pulmonary endothelial cells increases expression and PMA-induced activity of NOX2. Direct ENaC activation by TIP peptide improves capillary barrier function -measured by electrical cell substrate impedance sensing in endothelial monolayers and by Evans Blue Dye incorporation in mouse lungs- following infection with pneumococci. PLY-induced hyperpermeability in HL-MVEC monolayers is abrogated by both NOX2 inhibitor gp91dstat and TIP peptide. Endothelial NOX2 expression is assessed by increased surface membrane presence of phosphorylated p47phox subunit (Western blotting) in vitro and by co-localization of CD31 and gp91phox in mouse lung slices using DuoLink, whereas NOX2-generated superoxide is measured by chemiluminescence. TIP peptide blunts PMA-induced NOX2 activity in cells expressing ENaC-α, but not in neutrophils, which lack ENaC. Conditional endothelial ENaC-α KO (enENaC-α KO) mice develop increased capillary leak upon i.t. instillation with PLY or pneumococci, compared to wild type (wt) animals. TIP peptide diminishes capillary leak in Sp-infected wt mice, without significantly increasing lung bacterial load. Lung slices from Sp-infected enENaC-α KO mice have a significantly increased endothelial NOX2 expression, as compared to infected CRE mice. In conclusion, endothelial ENaC may represent a novel therapeutic target to reduce NOX2-mediated oxidative stress and capillary leak in ARDS, without impairing host defense.
RESUMEN
Pulmonary arterial hypertension (PAH) is a debilitating vascular disorder characterized by abnormal pulmonary artery smooth muscle cell (PASMC) proliferation and collagen synthesis, contributing to vascular remodeling and elevated pulmonary vascular resistance. This study investigated the critical role of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) in cell proliferation and collagen synthesis in PASMCs in PAH. Here we show that ATIC levels are significantly increased in the lungs of monocrotaline (MCT)-induced PAH rat model, hypoxia-induced PAH mouse model, and platelet-derived growth factor (PDGF)-stimulated PASMCs. Inhibition of ATIC attenuated PDGF-induced cell proliferation and collagen I synthesis in PASMCs. Conversely, overexpression or knockdown of ATIC causes a significant promotion or inhibition of Ras and ERK activation, cell proliferation, and collagen synthesis in PASMCs. Moreover, ATIC deficiency attenuated Ras activation in the lungs of hypoxia-induced PAH mice. Furthermore, Ras inhibition attenuates ATIC overexpression- and PDGF-induced collagen synthesis and PASMC proliferation. Notably, we identified that transcription factors MYC, early growth response protein 1 (EGR1), and specificity protein 1 (SP1) directly binds to promoters of Atic gene and regulate ATIC expression. These results provide the first evidence that ATIC promotes PASMC proliferation in pulmonary vascular remodeling through the Ras signaling pathway.NEW & NOTEWORTHY Our findings highlight the important role of ATIC in the PASMC proliferation of pulmonary vascular remodeling through its modulation of the Ras signaling pathway and its regulation by transcription factors MYC, EGR1, and SP1. ATIC's modulation of Ras signal pathway represents a novel mechanism contributing to PAH development.
Asunto(s)
Proliferación Celular , Músculo Liso Vascular , Miocitos del Músculo Liso , Arteria Pulmonar , Transducción de Señal , Animales , Masculino , Ratones , Ratas , Células Cultivadas , Modelos Animales de Enfermedad , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Transferasas de Hidroximetilo y Formilo/metabolismo , Transferasas de Hidroximetilo y Formilo/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/enzimología , Ratones Endogámicos C57BL , Monocrotalina/toxicidad , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/enzimología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/efectos de los fármacos , Proteínas ras/metabolismo , Proteínas ras/genética , Ratas Sprague-Dawley , Remodelación Vascular/efectos de los fármacosRESUMEN
BACKGROUND & AIMS: Nonalcoholic fatty liver disease is highly associated with obesity and progresses to nonalcoholic steatohepatitis when the liver develops overt inflammatory damage. While removing adenosine in the purine salvage pathway, adenosine kinase (ADK) regulates methylation reactions. We aimed to study whether hepatocyte ADK functions as an obesogenic gene/enzyme to promote excessive fat deposition and liver inflammation. METHODS: Liver sections of human subjects were examined for ADK expression using immunohistochemistry. Mice with hepatocyte-specific ADK disruption or overexpression were examined for hepatic fat deposition and inflammation. Liver lipidomics, hepatocyte RNA sequencing (RNA-seq), and single-cell RNA-seq for liver nonparenchymal cells were performed to analyze ADK regulation of hepatocyte metabolic responses and hepatocyte-nonparenchymal cells crosstalk. RESULTS: Whereas patients with nonalcoholic fatty liver disease had increased hepatic ADK levels, mice with hepatocyte-specific ADK disruption displayed decreased hepatic fat deposition on a chow diet and were protected from diet-induced excessive hepatic fat deposition and inflammation. In contrast, mice with hepatocyte-specific ADK overexpression displayed increased body weight and adiposity and elevated degrees of hepatic steatosis and inflammation compared with control mice. RNA-seq and epigenetic analyses indicated that ADK increased hepatic DNA methylation and decreased hepatic Ppara expression and fatty acid oxidation. Lipidomic and single-cell RNA-seq analyses indicated that ADK-driven hepatocyte factors, due to mitochondrial dysfunction, enhanced macrophage proinflammatory activation in manners involving increased expression of stimulator of interferon genes. CONCLUSIONS: Hepatocyte ADK functions to promote excessive fat deposition and liver inflammation through suppressing hepatocyte fatty acid oxidation and producing hepatocyte-derived proinflammatory mediators. Therefore, hepatocyte ADK is a therapeutic target for managing obesity and nonalcoholic fatty liver disease.
Asunto(s)
Hepatitis , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Adenosina Quinasa/genética , Adenosina Quinasa/metabolismo , Hepatocitos/metabolismo , Hepatitis/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Inflamación/metabolismo , Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL , Dieta Alta en GrasaRESUMEN
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and morbidity and mortality rates continue to rise. Atherosclerosis constitutes the principal etiology of CVDs. Endothelial injury, inflammation, and dysfunction are the initiating factors of atherosclerosis. Recently, we reported that endothelial adenosine receptor 2â¯A (ADORA2A), a G protein-coupled receptor (GPCR), plays critical roles in neovascularization disease and cerebrovascular disease. However, the precise role of endothelial ADORA2A in atherosclerosis is still not fully understood. Here, we showed that ADORA2A expression was markedly increased in the aortic endothelium of humans with atherosclerosis or Apoe-/- mice fed a high-cholesterol diet. In vivo studies unraveled that endothelial-specific Adora2a deficiency alleviated endothelial-to-mesenchymal transition (EndMT) and prevented the formation and instability of atherosclerotic plaque in Apoe-/- mice. Moreover, pharmacologic inhibition of ADORA2A with KW6002 recapitulated the anti-atherogenic phenotypes observed in genetically Adora2a-deficient mice. In cultured human aortic endothelial cells (HAECs), siRNA knockdown of ADORA2A or KW6002 inhibition of ADORA2A decreased EndMT, whereas adenoviral overexpression of ADORA2A induced EndMT. Mechanistically, ADORA2A upregulated ALK5 expression via a cAMP/PKA/CREB axis, leading to TGFß-Smad2/3 signaling activation, thereby promoting EndMT. In conclusion, these findings, for the first time, demonstrate that blockade of ADORA2A attenuated atherosclerosis via inhibition of EndMT induced by the CREB1-ALK5 axis. This study discloses a new link between endothelial ADORA2A and EndMT and indicates that inhibiting endothelial ADORA2A could be an effective novel strategy for the prevention and treatment of atherosclerotic CVDs.
Asunto(s)
Aterosclerosis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Transición Epitelial-Mesenquimal , Ratones Endogámicos C57BL , Receptor de Adenosina A2A , Receptor Tipo I de Factor de Crecimiento Transformador beta , Animales , Humanos , Masculino , Ratones , Antagonistas del Receptor de Adenosina A2/farmacología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ratones Noqueados , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2A/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Transducción de SeñalRESUMEN
AIMS: Proliferation of vascular smooth muscle cells (VSMCs) is a hallmark of pulmonary hypertension (PH). Proliferative cells utilize purine bases from the de novo purine synthesis (DNPS) pathways for nucleotide synthesis; however, it is unclear whether DNPS plays a critical role in VSMC proliferation during development of PH. The last two steps of DNPS are catalysed by the enzyme 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC). This study investigated whether ATIC-driven DNPS affects the proliferation of pulmonary artery smooth muscle cells (PASMCs) and the development of PH. METHODS AND RESULTS: Metabolites of DNPS in proliferative PASMCs were measured by liquid chromatography-tandem mass spectrometry. ATIC expression was assessed in platelet-derived growth factor-treated PASMCs and in the lungs of PH rodents and patients with pulmonary arterial hypertension. Mice with global and VSMC-specific knockout of Atic were utilized to investigate the role of ATIC in both hypoxia- and lung interleukin-6/hypoxia-induced murine PH. ATIC-mediated DNPS at the mRNA, protein, and enzymatic activity levels were increased in platelet-derived growth factor-treated PASMCs or PASMCs from PH rodents and patients with pulmonary arterial hypertension. In cultured PASMCs, ATIC knockdown decreased DNPS and nucleic acid DNA/RNA synthesis, and reduced cell proliferation. Global or VSMC-specific knockout of Atic attenuated vascular remodelling and inhibited the development and progression of both hypoxia- and lung IL-6/hypoxia-induced PH in mice. CONCLUSION: Targeting ATIC-mediated DNPS compromises the availability of purine nucleotides for incorporation into DNA/RNA, reducing PASMC proliferation and pulmonary vascular remodelling and ameliorating the development and progression of PH.
Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Ratones , Animales , Roedores/metabolismo , Remodelación Vascular/fisiología , Arteria Pulmonar , Purinas/metabolismo , Células Cultivadas , Hipoxia/metabolismo , ARN Mensajero/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proliferación Celular , Miocitos del Músculo Liso/metabolismoRESUMEN
Pro-inflammatory and reparative macrophages are crucial in clearing necrotic myocardium and promoting cardiac repair after myocardial infarction (MI), respectively. Extracellular adenosine has been demonstrated to modulate macrophage polarization through adenosine receptors. However, the role of intracellular adenosine in macrophage polarization has not been explored and adenosine kinase (ADK) is a major enzyme regulating intracellular adenosine levels. Here, we aimed to elucidate the role of ADK in macrophage polarization and its subsequent impact on MI. We demonstrated that ADK was upregulated in bone marrow-derived macrophages (BMDMs) after IL-4 treatment and was highly expressed in the infarct area at day 7 post-MI, especially in macrophages. Compared with wild-type mice, myeloid-specific Adk knockout mice showed increased infarct size, limited myofibroblast differentiation, reduced collagen deposition and more severe cardiac dysfunction after MI, which was related to impaired reparative macrophage phenotype in MI tissue. We found that ADK deletion or inhibition significantly decreased the expression of reparative genes, such as Arg1, Ym1, Fizz1, and Cd206 in BMDMs after IL-4 treatment. The increased intracellular adenosine due to Adk deletion inhibited transmethylation reactions and decreased the trimethylation of H3K4 in BMDMs after IL-4 treatment. Mechanistically, we demonstrated that Adk deletion suppressed reparative macrophage phenotype through decreased IRF4 expression, which resulted from reduced levels of H3K4me3 on the Irf4 promotor. Together, our study reveals that ADK exerts a protective effect against MI by promoting reparative macrophage polarization through epigenetic mechanisms.
Asunto(s)
Adenosina Quinasa , Infarto del Miocardio , Ratones , Animales , Adenosina Quinasa/genética , Adenosina Quinasa/metabolismo , Interleucina-4/genética , Macrófagos/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Fenotipo , Ratones Noqueados , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: Proliferation of vascular smooth muscle cells (VSMCs) is a hallmark of arterial diseases, especially in arterial restenosis after angioplasty or stent placement. VSMCs reprogram their metabolism to meet the increased requirements of lipids, proteins, and nucleotides for their proliferation. De novo purine synthesis is one of critical pathways for nucleotide synthesis. However, its role in proliferation of VSMCs in these arterial diseases has not been defined. METHODS: De novo purine synthesis in proliferative VSMCs was evaluated by liquid chromatography-tandem mass spectrometry. The expression of ATIC (5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase), the critical bifunctional enzyme in the last 2 steps of the de novo purine synthesis pathway, was assessed in VSMCs of proliferative arterial neointima. Global and VSMC-specific knockout of Atic mice were generated and used for examining the role of ATIC-associated purine metabolism in the formation of arterial neointima and atherosclerotic lesions. RESULTS: In this study, we found that de novo purine synthesis was increased in proliferative VSMCs. Upregulated purine synthesis genes, including ATIC, were observed in the neointima of the injured vessels and atherosclerotic lesions both in mice and humans. Global or specific knockout of Atic in VSMCs inhibited cell proliferation, attenuating the arterial neointima in models of mouse atherosclerosis and arterial restenosis. CONCLUSIONS: These results reveal that de novo purine synthesis plays an important role in VSMC proliferation in arterial disease. These findings suggest that targeting ATIC is a promising therapeutic approach to combat arterial diseases.
Asunto(s)
Aterosclerosis , Transferasas de Hidroximetilo y Formilo , Humanos , Ratones , Animales , Neointima , Purinas , Proliferación Celular , Miocitos del Músculo Liso , Aterosclerosis/genéticaRESUMEN
Kidney repair after injury involves the cross-talk of injured kidney tubules with interstitial fibroblasts and immune cells. Although tubular cells produce multiple cytokines, the role and regulation of specific cytokines in kidney repair are largely undefined. In this study, we detected the induction of fibroblast growth factor 2 (FGF2) in mouse kidneys after repeated low-dose cisplatin (RLDC) treatment and in RLDC-treated renal proximal tubule cells in vitro. We further detected FGF2 in the culture medium of RLDC-treated renal tubular cells but not in the medium of control cells, indicating that RLDC induces FGF2 expression and secretion. Compared with the medium of control cells, the medium of RLDC-treated renal tubular cells was twice as effective in promoting fibroblast proliferation. Remarkably, the proliferative effect of the RLDC-treated cell medium was diminished by FGF2-neutralizing antibodies. In addition, the RLDC-treated cell medium induced the expression of fibrosis-related proteins, which was partially suppressed by FGF2-neutralizing antibodies. In mice, FGF2 deficiency partially prevented RLDC-induced decline in kidney function, loss of kidney weight, renal fibrosis, and inflammation. Together, these results indicate that FGF2 is produced by renal tubular cells after kidney injury and acts as an important paracrine factor in maladaptive kidney repair and disease progression.
Asunto(s)
Cisplatino , Factor 2 de Crecimiento de Fibroblastos , Ratones , Animales , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Cisplatino/farmacología , Riñón/patología , Túbulos Renales/metabolismo , Fibrosis , Citocinas/metabolismoRESUMEN
Cisplatin induces both acute and chronic nephrotoxicity during chemotherapy in patients with cancer. Presented here is the first study of single-nucleus RNA sequencing (snRNA-seq) of cisplatin-induced nephrotoxicity. Repeated low-dose cisplatin treatment (RLDC) led to decreases in renal function and kidney weight in mice at 9 weeks. The kidneys of these mice showed tubular degeneration and dilation. snRNA-seq identified 16 cell types and 17 cell clusters in these kidneys. Cluster-by-cluster comparison demonstrated cell type-specific changes in gene expression and identified a unique proximal tubule (PT) injury/repair cluster that co-expressed the injury marker kidney injury molecule-1 (Kim1) and the proliferation marker Ki-67. Compared with control, post-RLDC kidneys had 424 differentially expressed genes in PT cells, including tubular transporters and cytochrome P450 enzymes involved in lipid metabolism. snRNA-seq also revealed transcriptional changes in potential PT injury markers (Krt222, Eda2r, Ltbp2, and Masp1) and repair marker (Bex4). RLDC induced inflammation and proinflammatory cytokines (RelB, TNF-α, Il7, Ccl2, and Cxcl2) and the expression of fibrosis markers (fibronectin, collagen I, connective tissue growth factor, vimentin, and α-smooth muscle actin). Together, these results provide new insights into RLDC-induced transcriptional changes at the single-cell level that may contribute to the development of chronic kidney problems in patients with cancer after cisplatin chemotherapy.
Asunto(s)
Lesión Renal Aguda , Antineoplásicos , Insuficiencia Renal Crónica , Lesión Renal Aguda/patología , Animales , Biomarcadores/metabolismo , Cisplatino/toxicidad , Fibrosis , Humanos , Riñón/patología , Proteínas de Unión a TGF-beta Latente/metabolismo , Ratones , ARN Nuclear Pequeño/metabolismo , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Receptor Xedar/metabolismoRESUMEN
Prostaglandin D2 (PGD2) released from immune cells or other cell types activates its receptors, D prostanoid receptor (DP)1 and 2 (DP1 and DP2), to promote inflammatory responses in allergic and lung diseases. Prostaglandin-mediated inflammation may also contribute to vascular diseases such as abdominal aortic aneurysm (AAA). However, the role of DP receptors in the pathogenesis of AAA has not been systematically investigated. In the present study, DP1-deficient mice and pharmacological inhibitors of either DP1 or DP2 were tested in two distinct mouse models of AAA formation: angiotensin II (AngII) infusion and calcium chloride (CaCl2) application. DP1-deficient mice [both heterozygous (DP1+/-) and homozygous (DP1-/-)] were protected against CaCl2-induced AAA formation, in conjunction with decreased matrix metallopeptidase (MMP) activity and adventitial inflammatory cell infiltration. In the AngII infusion model, DP1+/- mice, but not DP1-/- mice, exhibited reduced AAA formation. Interestingly, compensatory up-regulation of the DP2 receptor was detected in DP1-/- mice in response to AngII infusion, suggesting a potential role for DP2 receptors in AAA. Treatment with selective antagonists of DP1 (laropiprant) or DP2 (fevipiprant) protected against AAA formation, in conjunction with reduced elastin degradation and aortic inflammatory responses. In conclusion, PGD2 signaling contributes to AAA formation in mice, suggesting that antagonists of DP receptors, which have been extensively tested in allergic and lung diseases, may be promising candidates to ameliorate AAA.
Asunto(s)
Aneurisma de la Aorta Abdominal/etiología , Receptores Inmunológicos/fisiología , Receptores de Prostaglandina/fisiología , Angiotensina II/farmacología , Animales , Aneurisma de la Aorta Abdominal/prevención & control , Masculino , Ratones , Receptores Inmunológicos/antagonistas & inhibidores , Receptores de Prostaglandina/antagonistas & inhibidoresRESUMEN
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells which are immunosuppressive and glycolytically inactive in inflammatory diseases. However, it is unknown whether MDSCs contribute to ischemic stroke and how glycolysis regulates MDSC function in such a context. Here, we showed that MDSCs arise in the blood of patients at early phase of stroke. Similar results were observed in temporary middle cerebral artery occlusion-induced cerebral ischemic mice. Pharmaceutical exhaustion of MDSCs aggravated, while adoptive transfer of MDSCs rescued the ischemic brain injury. However, the differentiation of MDSCs into immunopotent myeloid cells which coincides with increased glycolysis was observed in the context of ischemic stroke. Mechanistically, the glycolytic product lactate autonomously induces MDSC differentiation through activation of mTORC1, and paracrinely activates Th1 and Th17 cells. Moreover, gene knockout or inhibition of the glycolytic enzyme PFKFB3 increased endogenous MDSCs by blocking their differentiation, and improved ischemic brain injury. Collectively, these results revealed that glycolytic switch decreases the immunosuppressive and neuroprotective role of MDSCs in ischemic stroke and pharmacological targeting MDSCs via glycolysis inhibition constitutes a promising therapeutic strategy for ischemic stroke.
Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular Isquémico , Células Supresoras de Origen Mieloide , Animales , Glucólisis , Humanos , Inmunosupresores , Ratones , Ratones Endogámicos C57BLRESUMEN
Increased glycolysis in the lung vasculature has been connected to the development of pulmonary hypertension (PH). We therefore investigated whether glycolytic regulator 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFKFB3)-mediated endothelial glycolysis plays a critical role in the development of PH. Heterozygous global deficiency of Pfkfb3 protected mice from developing hypoxia-induced PH, and administration of the PFKFB3 inhibitor 3PO almost completely prevented PH in rats treated with Sugen 5416/hypoxia, indicating a causative role of PFKFB3 in the development of PH. Immunostaining of lung sections and Western blot with isolated lung endothelial cells showed a dramatic increase in PFKFB3 expression and activity in pulmonary endothelial cells of rodents and humans with PH. We generated mice that were constitutively or inducibly deficient in endothelial Pfkfb3 and found that these mice were incapable of developing PH or showed slowed PH progression. Compared with control mice, endothelial Pfkfb3-knockout mice exhibited less severity of vascular smooth muscle cell proliferation, endothelial inflammation, and leukocyte recruitment in the lungs. In the absence of PFKFB3, lung endothelial cells from rodents and humans with PH produced lower levels of growth factors (such as PDGFB and FGF2) and proinflammatory factors (such as CXCL12 and IL1ß). This is mechanistically linked to decreased levels of HIF2A in lung ECs following PFKFB3 knockdown. Taken together, these results suggest that targeting PFKFB3 is a promising strategy for the treatment of PH.
Asunto(s)
Glucólisis , Hipertensión Pulmonar/etiología , Pulmón/metabolismo , Fosfofructoquinasa-2/fisiología , Animales , Modelos Animales de Enfermedad , Endotelio/metabolismo , Técnicas de Silenciamiento del Gen , Glucólisis/fisiología , Humanos , Hipertensión Pulmonar/metabolismo , Hipoxia/complicaciones , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfofructoquinasa-2/deficiencia , Fosfofructoquinasa-2/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
Traditional Chinese medicines(TCMs) have certain limitations in the clinical research design in their post-marketing evaluation, so that randomized controlled programs cannot be strictly implemented in some studies, while the objective performance criteria is a reasonable external controlled research method that has been gradually recognized at home and abroad in recent years in addition to randomized controlled trial(RCT) method. It is more mature in medical devices, surgery and other research fields, but there is no relevant report in the field of post-marketing evaluation of Chinese patent medicines. In this paper, the application prospect of the objective performance criteria and the problems were discussed in the field of post-marketing evaluation of TCM. The characteristics of as TCM are more consistent with the scope of the objective performance criteria, the application of the objective performance criteria in post-marketing evaluation of Chinese patent medicines, especially in single arm research, can break through the limitations of existing conventional clinical research methods, and improve the level of evidence, with good feasibility and advantages. However, in the application process, we should pay attention to the key issues such as the selection of index, research population, follow-up period and the reference selection, to ensure the quality of research. This research group has carried out some exploration and practice in the field of post-marketing evaluation of TCM injections by using single arm combined with the objective performance criteria, hoping to establish the key technology in this field, and provide certain research and design reference for the secondary development of Chinese patent medicines.
Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Mercadotecnía , Medicamentos sin Prescripción , Vigilancia de Productos Comercializados , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
OBJECTIVE: Inhibition of adenosine kinase (ADK), via augmenting endogenous adenosine levels exerts cardiovascular protection. We tested the hypothesis that ADK inhibition improves microvascular dilator and left ventricle (LV) contractile function under metabolic or hemodynamic stress. METHODS AND RESULTS: In Obese diabetic Zucker fatty/spontaneously hypertensive heart failure F1 hybrid rats, treatment with the selective ADK inhibitor, ABT-702 (1.5 mg/kg, intraperitoneal injections for 8-week) restored acetylcholine-, sodium nitroprusside-, and adenosine-induced dilations in isolated coronary arterioles, an effect that was accompanied by normalized end-diastolic pressure (in mm Hg, Lean: 3.4 ± 0.6, Obese: 17.6 ± 4.2, Obese + ABT: 6.6 ± 1.4) and LV relaxation constant, Tau (in ms, Lean: 6.9 ± 1.5, Obese: 13.9 ± 1.7, Obese + ABT: 6.0 ± 1.1). Mice with vascular endothelium selective ADK deletion (ADKVEC KO) exhibited an enhanced dilation to acetylcholine in isolated gracilis muscle (lgEC50 WT: -8.2 ± 0.1, ADKVEC KO: -8.8 ± 0.1, P < .05) and mesenteric arterioles (lgEC50 WT: -7.4 ± 0.2, ADKVEC KO: -8.1 ± 1.2, P < .05) when compared to wild-type (WT) mice, whereas relaxation of the femoral artery and aorta (lgEC50 WT: -7.03 ± 0.6, ADKVEC KO: -7.05 ± 0.8) was similar in the two groups. Wild-type mice progressively developed LV systolic and diastolic dysfunction when they underwent transverse aortic constriction surgery, whereas ADKVEC -KO mice displayed a lesser degree in decline of LV function. CONCLUSIONS: Our results indicate that ADK inhibition selectively enhances microvascular vasodilator function, whereby it improves LV perfusion and LV contractile function under metabolic and hemodynamic stress.
Asunto(s)
Adenosina Quinasa/antagonistas & inhibidores , Microvasos/enzimología , Morfolinas/farmacología , Pirimidinas/farmacología , Vasodilatación/efectos de los fármacos , Disfunción Ventricular Izquierda/enzimología , Adenosina Quinasa/genética , Adenosina Quinasa/metabolismo , Animales , Diástole/efectos de los fármacos , Diástole/genética , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Zucker , Vasodilatación/genética , Disfunción Ventricular Izquierda/genéticaRESUMEN
Rationale: Glycolytic shift is implicated in the pathogenesis of pulmonary arterial hypertension (PAH). It remains unknown how glycolysis is increased and how increased glycolysis contributes to pulmonary vascular remodeling in PAH.Objectives: To determine whether increased glycolysis is caused by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) and how PFKFB3-driven glycolysis induces vascular remodeling in PAH.Methods: PFKFB3 levels were measured in pulmonary arteries of patients and animals with PAH. Lactate levels were assessed in lungs of animals with PAH and in pulmonary artery smooth muscle cells (PASMCs). Genetic and pharmacologic approaches were used to investigate the role of PFKFB3 in PAH.Measurements and Main Results: Lactate production was elevated in lungs of PAH rodents and in platelet-derived growth factor-treated PASMCs. PFKFB3 protein was higher in pulmonary arteries of patients and rodents with PAH, in PASMCs of patients with PAH, and in platelet-derived growth factor-treated PASMCs. PFKFB3 inhibition by genetic disruption and chemical inhibitor attenuated phosphorylation/activation of extracellular signal-regulated kinase (ERK1/2) and calpain-2, and vascular remodeling in PAH rodent models, and reduced platelet-derived growth factor-induced phosphorylation/activation of ERK1/2 and calpain-2, collagen synthesis and proliferation of PASMCs. ERK1/2 inhibition attenuated phosphorylation/activation of calpain-2, and vascular remodeling in Sugen/hypoxia PAH rats, and reduced lactate-induced phosphorylation/activation of calpain-2, collagen synthesis, and proliferation of PASMCs. Calpain-2 inhibition reduced lactate-induced collagen synthesis and proliferation of PASMCs.Conclusions: Upregulated PFKFB3 mediates collagen synthesis and proliferation of PASMCs, contributing to vascular remodeling in PAH. The mechanism is through the elevation of glycolysis and lactate that results in the activation of calpain by ERK1/2-dependent phosphorylation of calpain-2.
Asunto(s)
Proliferación Celular/efectos de los fármacos , Músculo Liso Vascular/crecimiento & desarrollo , Fosfofructoquinasa-2/sangre , Fosfofructoquinasa-2/metabolismo , Hipertensión Arterial Pulmonar/sangre , Hipertensión Arterial Pulmonar/fisiopatología , Remodelación Vascular/fisiología , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , RatasRESUMEN
Severe reduction in the ß-cell number (collectively known as the ß-cell mass) contributes to the development of both type 1 and type 2 diabetes. Recent pharmacological studies have suggested that increased pancreatic ß-cell proliferation could be due to specific inhibition of adenosine kinase (ADK). However, genetic evidence for the function of pancreatic ß-cell ADK under physiological conditions or in a pathological context is still lacking. In this study, we crossed mice carrying LoxP-flanked Adk gene with Ins2-Cre mice to acquire pancreatic ß -cell ADK deficiency (Ins2-Cre± Adkfl/fl ) mice. Our results revealed that Ins2-Cre+/- Adkfl/fl mice showed improved glucose metabolism and ß-cell mass in younger mice, but showed normal activity in adult mice. Moreover, Ins2-Cre± Adkfl/fl mice were more resistant to streptozotocin (STZ) induced hyperglycaemia and pancreatic ß-cell damage in adult mice. In conclusion, we found that ADK negatively regulates ß-cell replication in young mice as well as under pathological conditions, such as STZ induced pancreatic ß-cell damage. Our study provided genetic evidence that specific inhibition of pancreatic ß-cell ADK has potential for anti-diabetic therapy.
Asunto(s)
Adenosina Quinasa/genética , Eliminación de Gen , Glucosa/metabolismo , Homeostasis , Hiperglucemia/inducido químicamente , Hiperglucemia/enzimología , Células Secretoras de Insulina/enzimología , Envejecimiento/patología , Animales , Recuento de Células , Proliferación Celular , Ratones Noqueados , Estreptozocina , Factores de TiempoRESUMEN
Renal interstitial fibrosis is a common pathological feature of chronic kidney disease that may involve changes of metabolism in kidney cells. In the present study, we first showed that blockade of glycolysis with either dichloroacetate (DCA) or shikonin to target different glycolytic enzymes reduced renal fibrosis in a mouse model of unilateral ureteral obstruction (UUO). Both inhibitors evidently suppressed the induction of fibronectin and collagen type I in obstructed kidneys, with DCA also showing inhibitory effects on collagen type IV and α-smooth muscle actin (α-SMA). Histological examination also confirmed less collagen deposition in DCA-treated kidneys. Both DCA and shikonin significantly inhibited renal tubular apoptosis but not interstitial apoptosis in UUO. Macrophage infiltration after UUO injury was also suppressed. Shikonin, but not DCA, caused obvious animal weight loss during UUO. To determine whether shikonin and DCA worked on tubular cells and/or fibroblasts, we tested their effects on cultured renal proximal tubular BUMPT cells and renal NRK-49F fibroblasts during hypoxia or transforming growth factor-ß1 treatment. Although both inhibitors reduced fibronectin and α-SMA production in NRK-49F cells during hypoxia or transforming growth factor-ß1 treatment, they did not suppress fibronectin and α-SMA expression in BUMPT cells. Altogether, these results demonstrate the inhibitory effect of glycolysis inhibitors on renal interstitial fibrosis. In this regard, DCA is more potent for fibrosis inhibition and less toxic to animals than shikonin.
Asunto(s)
Ácido Dicloroacético/farmacología , Inhibidores Enzimáticos/farmacología , Células Epiteliales/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Glucólisis/efectos de los fármacos , Enfermedades Renales/prevención & control , Túbulos Renales/efectos de los fármacos , Naftoquinonas/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Obstrucción Ureteral/complicacionesRESUMEN
BACKGROUND & AIMS: Transmembrane protein 173 (TMEM173 or STING) signaling by macrophage activates the type I interferon-mediated innate immune response. The innate immune response contributes to hepatic steatosis and non-alcoholic fatty liver disease (NAFLD). We investigated whether STING regulates diet-induced in hepatic steatosis, inflammation, and liver fibrosis in mice. METHODS: Mice with disruption of Tmem173 (STINGgt) on a C57BL/6J background, mice without disruption of this gene (controls), and mice with disruption of Tmem173 only in myeloid cells were fed a standard chow diet, a high-fat diet (HFD; 60% fat calories), or a methionine- and choline-deficient diet (MCD). Liver tissues were collected and analyzed by histology and immunohistochemistry. Bone marrow cells were isolated from mice, differentiated into macrophages, and incubated with 5,6-dimethylxanthenone-4-acetic acid (DMXAA; an activator of STING) or cyclic guanosine monophosphate-adenosine monophosphate (cGAMP). Macrophages or their media were applied to mouse hepatocytes or human hepatic stellate cells (LX2) cells, which were analyzed for cytokine expression, protein phosphorylation, and fat deposition (by oil red O staining after incubation with palmitate). We obtained liver tissues from patients with and without NAFLD and analyzed these by immunohistochemistry. RESULTS: Non-parenchymal cells of liver tissues from patients with NAFLD had higher levels of STING than cells of liver tissues from patients without NAFLD. STINGgt mice and mice with disruption only in myeloid cells developed less severe hepatic steatosis, inflammation, and/or fibrosis after the HFD or MCD than control mice. Levels of phosphorylated c-Jun N-terminal kinase and p65 and mRNAs encoding tumor necrosis factor and interleukins 1B and 6 (markers of inflammation) were significantly lower in liver tissues from STINGgt mice vs control mice after the HFD or MCD. Transplantation of bone marrow cells from control mice to STINGgt mice restored the severity of steatosis and inflammation after the HFD. Macrophages from control, but not STINGgt, mice increased markers of inflammation in response to lipopolysaccharide and cGAMP. Hepatocytes and stellate cells cocultured with STINGgt macrophages in the presence of DMXAA or incubated with the medium collected from these macrophages had decreased fat deposition and markers of inflammation compared with hepatocytes or stellate cells incubated with control macrophages. CONCLUSIONS: Levels of STING were increased in liver tissues from patients with NAFLD and mice with HFD-induced steatosis. In mice, loss of STING from macrophages decreased the severity of liver fibrosis and the inflammatory response. STING might be a therapeutic target for NAFLD.
Asunto(s)
Inmunidad Innata/genética , Cirrosis Hepática/genética , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Animales , Hepatitis/genética , Hepatitis/metabolismo , Humanos , Interferón Tipo I/inmunología , Hígado/metabolismo , Hígado/patología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BLRESUMEN
Adenosine 2A receptor (A2A R) exerts protective roles in endotoxin- and/or ischemia-induced tissue damage. However, the role for A2A R in nonalcoholic fatty liver disease (NAFLD) remains largely unknown. We sought to examine the effects of global and/or myeloid cell-specific A2A R disruption on the aspects of obesity-associated NAFLD and to elucidate the underlying mechanisms. Global and/or myeloid cell-specific A2A R-disrupted mice and control mice were fed a high-fat diet (HFD) to induce NAFLD. In addition, bone marrow-derived macrophages and primary mouse hepatocytes were examined for inflammatory and metabolic responses. Upon feeding an HFD, both global A2A R-disrupted mice and myeloid cell-specific A2A R-defcient mice revealed increased severity of HFD-induced hepatic steatosis and inflammation compared with their respective control mice. In in vitro experiments, A2A R-deficient macrophages exhibited increased proinflammatory responses, and enhanced fat deposition of wild-type primary hepatocytes in macrophage-hepatocyte cocultures. In primary hepatocytes, A2A R deficiency increased the proinflammatory responses and enhanced the effect of palmitate on stimulating fat deposition. Moreover, A2A R deficiency significantly increased the abundance of sterol regulatory element-binding protein 1c (SREBP1c) in livers of fasted mice and in hepatocytes upon nutrient deprivation. In the absence of A2A R, SREBP1c transcription activity was significantly increased in mouse hepatocytes. CONCLUSION: Taken together, our results demonstrate that disruption of A2A R in both macrophage and hepatocytes accounts for increased severity of NAFLD, likely through increasing inflammation and through elevating lipogenic events due to stimulation of SREBP1c expression and transcription activity. (Hepatology 2018;68:48-61).