Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 144(2): 636-654, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33479772

RESUMEN

As the clinical failure of glioblastoma treatment is attributed by multiple components, including myelin-associated infiltration, assessment of the molecular mechanisms underlying such process and identification of the infiltrating cells have been the primary objectives in glioblastoma research. Here, we adopted radiogenomic analysis to screen for functionally relevant genes that orchestrate the process of glioma cell infiltration through myelin and promote glioblastoma aggressiveness. The receptor of the Nogo ligand (NgR1) was selected as the top candidate through Differentially Expressed Genes (DEG) and Gene Ontology (GO) enrichment analysis. Gain and loss of function studies on NgR1 elucidated its underlying molecular importance in suppressing myelin-associated infiltration in vitro and in vivo. The migratory ability of glioblastoma cells on myelin is reversibly modulated by NgR1 during differentiation and dedifferentiation process through deubiquitinating activity of USP1, which inhibits the degradation of ID1 to downregulate NgR1 expression. Furthermore, pimozide, a well-known antipsychotic drug, upregulates NgR1 by post-translational targeting of USP1, which sensitizes glioma stem cells to myelin inhibition and suppresses myelin-associated infiltration in vivo. In primary human glioblastoma, downregulation of NgR1 expression is associated with highly infiltrative characteristics and poor survival. Together, our findings reveal that loss of NgR1 drives myelin-associated infiltration of glioblastoma and suggest that novel therapeutic strategies aimed at reactivating expression of NgR1 will improve the clinical outcome of glioblastoma patients.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/metabolismo , Glioblastoma/patología , Vaina de Mielina/metabolismo , Receptor Nogo 1/metabolismo , Animales , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Proteínas Inhibidoras de la Diferenciación/metabolismo , Ratones Endogámicos BALB C , Vaina de Mielina/patología , Proteasas Ubiquitina-Específicas/metabolismo
2.
J Neurosci Res ; 99(11): 2874-2887, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34510521

RESUMEN

Axons in the adult mammalian central nervous system fail to regenerate after injury. By contrast, spontaneous axon regeneration occurs in the peripheral nervous system (PNS) due to a supportive PNS environment and an increase in the intrinsic growth potential induced by injury via cooperative activation of multifaceted biological pathways. This study compared axon regeneration and injury responses in C57BL/6 male and female mice after sciatic nerve crush (SNC) injury. The extent of axon regeneration in vivo was indistinguishable in male and female mice when observed at 3 days after SNC injury, and primary dorsal root ganglion (DRG) neurons from injured, male and female mice extended axons to a similar length. Moreover, the induction of selected regeneration-associated genes (RAGs), such as Atf3, Sprr1a, Gap43, Sox11, Jun, Gadd45a, and Smad1 were comparable in male and female DRGs when assessed by quantitative real-time reverse transcription polymerase chain reaction. Furthermore, the RNA-seq analysis of male and female DRGs revealed that differentially expressed genes (DEGs) in SNC groups compared to sham-operated groups included many common genes associated with neurite outgrowth. However, we also found that a large number of genes in the DEGs were sex dependent, implicating the involvement of distinct gene regulatory network in the two sexes following peripheral nerve injury. In conclusion, we found that male and female mice mounted a comparable axon regeneration response and many RAGs were commonly induced in response to SNC. However, given that many DEGs were sex-dependently expressed, future studies are needed to investigate whether they contribute to peripheral axon regeneration, and if so, to what extent.


Asunto(s)
Traumatismos de los Nervios Periféricos , Animales , Axones/fisiología , Femenino , Ganglios Espinales/metabolismo , Masculino , Mamíferos , Ratones , Ratones Endogámicos C57BL , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Nervio Ciático
3.
Int J Mol Sci ; 21(3)2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32033476

RESUMEN

Oligodendrocytes are specialized cells that myelinate axons in the central nervous system. Defects in oligodendrocyte function and failure to form or maintain myelin sheaths can cause a number of neurological disorders. Oligodendrocytes are differentiated from oligodendrocyte progenitor cells (OPCs), which extend several processes that contact, elaborate, and eventually wrap axonal segments to form multilayered myelin sheaths. These processes require extensive changes in the cytoarchitecture and must be regulated by reorganization of the cytoskeleton. Here, we established a simple protocol to isolate and differentiate mouse OPCs, and by using this method, we investigated a role of microtubules (MTs) in oligodendrocyte differentiation. Oligodendrocytes developed a complex network of MTs during differentiation, and treatment of differentiating oligodendrocytes with nanomolar concentrations of MT-targeting agents (MTAs) markedly affected oligodendrocyte survival and differentiation. We found that acute exposure to vincristine and nocodazole at early stages of oligodendrocyte differentiation markedly increased MT arborization and enhanced differentiation, whereas taxol and epothilone B treatment produced opposing outcomes. Furthermore, treatment of myelinating co-cultures of oligodendrocytes and neurons with nanomolar concentrations of MTAs at late stages of oligodendrocyte differentiation induced dysmyelination. Together, these results suggest that MTs play an important role in the survival, differentiation, and myelination of oligodendrocytes.


Asunto(s)
Diferenciación Celular/fisiología , Microtúbulos/fisiología , Oligodendroglía/fisiología , Animales , Axones/metabolismo , Axones/fisiología , Células Cultivadas , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiología , Técnicas de Cocultivo/métodos , Citoesqueleto/metabolismo , Citoesqueleto/fisiología , Ratones , Ratones Endogámicos ICR , Microtúbulos/metabolismo , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/fisiología , Neurogénesis/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/fisiología , Oligodendroglía/metabolismo
4.
Glia ; 67(2): 360-375, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30444070

RESUMEN

Schwann cells (SCs), the primary glia in the peripheral nervous system (PNS), display remarkable plasticity in that fully mature SCs undergo dedifferentiation and convert to repair SCs upon nerve injury. Dedifferentiated SCs provide essential support for PNS regeneration by producing signals that enhance the survival and axon regrowth of damaged neurons, but the identities of neurotrophic factors remain incompletely understood. Here we show that SCs express and secrete progranulin (PGRN), depending on the differentiation status of SCs. PGRN expression and secretion markedly increased as primary SCs underwent dedifferentiation, while PGRN secretion was prevented by administration of cAMP, which induced SC differentiation. We also found that sciatic nerve injury, a physiological trigger of SC dedifferentiation, induced PGRN expression in SCs in vivo. These results suggest that dedifferentiated SCs express and secrete PGRN that functions as a paracrine factor to support the survival and axon growth of neighboring neurons after injury.


Asunto(s)
Axones/patología , Proliferación Celular/efectos de los fármacos , Neuronas Motoras/patología , Progranulinas/metabolismo , Células de Schwann/metabolismo , Neuropatía Ciática/patología , Animales , Axones/efectos de los fármacos , Bucladesina/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Medios de Cultivo Condicionados/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fluoresceínas/metabolismo , Espectrometría de Masas , Ratones , Ratones Endogámicos ICR , Neuronas Motoras/efectos de los fármacos , Progranulinas/farmacología , ARN Mensajero/metabolismo , Células de Schwann/química , Médula Espinal/citología
6.
Genes Dev ; 25(18): 1968-81, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21937714

RESUMEN

Suppression of glycogen synthase kinase 3 (GSK3) activity in neurons yields pleiotropic outcomes, causing both axon growth promotion and inhibition. Previous studies have suggested that specific GSK3 substrates, such as adenomatous polyposis coli (APC) and collapsin response mediator protein 2 (CRMP2), support axon growth by regulating the stability of axonal microtubules (MTs), but the substrate(s) and mechanisms conveying axon growth inhibition remain elusive. Here we show that CLIP (cytoplasmic linker protein)-associated protein (CLASP), originally identified as a MT plus end-binding protein, displays both plus end-binding and lattice-binding activities in nerve growth cones, and reveal that the two MT-binding activities regulate axon growth in an opposing manner: The lattice-binding activity mediates axon growth inhibition induced by suppression of GSK3 activity via preventing MT protrusion into the growth cone periphery, whereas the plus end-binding property supports axon extension via stabilizing the growing ends of axonal MTs. We propose a model in which CLASP transduces GSK3 activity levels to differentially control axon growth by coordinating the stability and configuration of growth cone MTs.


Asunto(s)
Axones/fisiología , Regulación del Desarrollo de la Expresión Génica , Glucógeno Sintasa Quinasa 3/metabolismo , Conos de Crecimiento/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Animales , Axones/enzimología , Citoesqueleto/metabolismo , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3/genética , Conos de Crecimiento/enzimología , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Miosina Tipo II/metabolismo , Neuronas/citología , Unión Proteica
7.
PLoS Biol ; 13(5): e1002152, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25992628

RESUMEN

Epidermal growth factor receptor variant III (EGFRvIII) has been associated with glioma stemness, but the direct molecular mechanism linking the two is largely unknown. Here, we show that EGFRvIII induces the expression and secretion of pigment epithelium-derived factor (PEDF) via activation of signal transducer and activator of transcription 3 (STAT3), thereby promoting self-renewal and tumor progression of glioma stem cells (GSCs). Mechanistically, PEDF sustained GSC self-renewal by Notch1 cleavage, and the generated intracellular domain of Notch1 (NICD) induced the expression of Sox2 through interaction with its promoter region. Furthermore, a subpopulation with high levels of PEDF was capable of infiltration along corpus callosum. Inhibition of PEDF diminished GSC self-renewal and increased survival of orthotopic tumor-bearing mice. Together, these data indicate the novel role of PEDF as a key regulator of GSC and suggest clinical implications.


Asunto(s)
Receptores ErbB/metabolismo , Proteínas del Ojo/metabolismo , Glioma/etiología , Células Madre Neoplásicas/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Serpinas/metabolismo , Animales , Comunicación Autocrina , Progresión de la Enfermedad , Femenino , Glioma/metabolismo , Glioma/mortalidad , Células HEK293 , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Experimentales/metabolismo , Receptores Notch/metabolismo , Factores de Transcripción SOXB1/metabolismo , Factor de Transcripción STAT3/metabolismo
8.
Nat Mater ; 15(7): 792-801, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26974411

RESUMEN

Living cells and the extracellular matrix (ECM) can exhibit complex interactions that define key developmental, physiological and pathological processes. Here, we report a new type of directed migration-which we term 'topotaxis'-guided by the gradient of the nanoscale topographic features in the cells' ECM environment. We show that the direction of topotaxis is reflective of the effective cell stiffness, and that it depends on the balance of the ECM-triggered signalling pathways PI(3)K-Akt and ROCK-MLCK. In melanoma cancer cells, this balance can be altered by different ECM inputs, pharmacological perturbations or genetic alterations, particularly a loss of PTEN in aggressive melanoma cells. We conclude that topotaxis is a product of the material properties of cells and the surrounding ECM, and propose that the invasive capacity of many cancers may depend broadly on topotactic responses, providing a potentially attractive mechanism for controlling invasive and metastatic behaviour.


Asunto(s)
Movimiento Celular , Regulación Neoplásica de la Expresión Génica/fisiología , Melanoma , Taxia/fisiología , Línea Celular Tumoral , Humanos , Melanoma/patología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Propiedades de Superficie , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
9.
Neural Plast ; 2016: 5056418, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27872763

RESUMEN

Several studies have demonstrated the therapeutic potential of applying microtubule- (MT-) stabilizing agents (MSAs) that cross the blood-brain barrier to promote axon regeneration and prevent axonal dystrophy in rodent models of spinal cord injury and neurodegenerative diseases. Paradoxically, administration of MSAs, which have been widely prescribed to treat malignancies, is well known to cause debilitating peripheral neuropathy and axon degeneration. Despite the growing interest of applying MSAs to treat the injured or degenerating central nervous system (CNS), consequences of MSA exposure to neurons in the central and peripheral nervous system (PNS) have not been thoroughly investigated. Here, we have examined and compared the effects of a brain-penetrant MSA, epothilone B, on cortical and sensory neurons in culture and show that epothilone B exhibits both beneficial and detrimental effects, depending on not only the concentration of drug but also the type and age of a neuron, as seen in clinical settings. Therefore, to exploit MSAs to their full benefit and minimize unwanted side effects, it is important to understand the properties of neuronal MTs and strategies should be devised to deliver minimal effective concentration directly to the site where needed.


Asunto(s)
Epotilonas/farmacología , Microtúbulos/fisiología , Neuronas/fisiología , Moduladores de Tubulina/farmacología , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Células Cultivadas , Femenino , Ratones , Ratones Endogámicos ICR , Microtúbulos/efectos de los fármacos , Neuronas/efectos de los fármacos
10.
Nat Rev Neurosci ; 11(8): 539-51, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20648061

RESUMEN

Recent evidence suggests that glycogen synthase kinase 3 (GSK3) proteins and their upstream and downstream regulators have key roles in many fundamental processes during neurodevelopment. Disruption of GSK3 signalling adversely affects brain development and is associated with several neurodevelopmental disorders. Here, we discuss the mechanisms by which GSK3 activity is regulated in the nervous system and provide an overview of the recent advances in the understanding of how GSK3 signalling controls neurogenesis, neuronal polarization and axon growth during brain development. These recent advances suggest that GSK3 is a crucial node that mediates various cellular processes that are controlled by multiple signalling molecules--for example, disrupted in schizophrenia 1 (DISC1), partitioning defective homologue 3 (PAR3), PAR6 and Wnt proteins--that regulate neurodevelopment.


Asunto(s)
Glucógeno Sintasa Quinasa 3/fisiología , Neurogénesis/fisiología , Neuronas/enzimología , Transducción de Señal/fisiología , Animales , Encéfalo/embriología , Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Glucógeno Sintasa Quinasa 3/biosíntesis , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Humanos , Isoenzimas/biosíntesis , Isoenzimas/genética , Isoenzimas/fisiología , Neurogénesis/genética , Neuronas/citología , Neuronas/fisiología , Transducción de Señal/genética
11.
Proc Natl Acad Sci U S A ; 108(12): 5057-62, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21383151

RESUMEN

Neurons in the central nervous system (CNS) fail to regenerate axons after injuries due to the diminished intrinsic axon growth capacity of mature neurons and the hostile extrinsic environment composed of a milieu of inhibitory factors. Recent studies revealed that targeting a particular group of extracellular inhibitory factors is insufficient to trigger long-distance axon regeneration. Instead of antagonizing the growing list of impediments, tackling a common target that mediates axon growth inhibition offers an alternative strategy to promote axon regeneration. Neuronal growth cone, the machinery that derives axon extension, is the final converging target of most, if not all, growth impediments in the CNS. In this study, we aim to promote axon growth by directly targeting the growth cone. Here we report that pharmacological inhibition or genetic silencing of nonmuscle myosin II (NMII) markedly accelerates axon growth over permissive and nonpermissive substrates, including major CNS inhibitors such as chondroitin sulfate proteoglycans and myelin-associated inhibitors. We find that NMII inhibition leads to the reorganization of both actin and microtubules (MTs) in the growth cone, resulting in MT reorganization that allows rapid axon extension over inhibitory substrates. In addition to enhancing axon extension, we show that local blockade of NMII activity in axons is sufficient to trigger axons to grow across the permissive-inhibitory border. Together, our study proposes NMII and growth cone cytoskeletal components as effective targets for promoting axon regeneration.


Asunto(s)
Axones/metabolismo , Conos de Crecimiento/metabolismo , Microtúbulos/metabolismo , Miosina Tipo II/biosíntesis , Regeneración/fisiología , Animales , Silenciador del Gen , Ratones , Microtúbulos/genética , Miosina Tipo II/genética , Ingeniería de Tejidos
12.
Cancer Cell ; 42(3): 358-377.e8, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38215747

RESUMEN

The evolutionary trajectory of glioblastoma (GBM) is a multifaceted biological process that extends beyond genetic alterations alone. Here, we perform an integrative proteogenomic analysis of 123 longitudinal glioblastoma pairs and identify a highly proliferative cellular state at diagnosis and replacement by activation of neuronal transition and synaptogenic pathways in recurrent tumors. Proteomic and phosphoproteomic analyses reveal that the molecular transition to neuronal state at recurrence is marked by post-translational activation of the wingless-related integration site (WNT)/ planar cell polarity (PCP) signaling pathway and BRAF protein kinase. Consistently, multi-omic analysis of patient-derived xenograft (PDX) models mirror similar patterns of evolutionary trajectory. Inhibition of B-raf proto-oncogene (BRAF) kinase impairs both neuronal transition and migration capability of recurrent tumor cells, phenotypic hallmarks of post-therapy progression. Combinatorial treatment of temozolomide (TMZ) with BRAF inhibitor, vemurafenib, significantly extends the survival of PDX models. This study provides comprehensive insights into the biological mechanisms of glioblastoma evolution and treatment resistance, highlighting promising therapeutic strategies for clinical intervention.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Proteogenómica , Animales , Humanos , Glioblastoma/genética , Proteínas Proto-Oncogénicas B-raf , Proteómica , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Modelos Animales de Enfermedad , Neoplasias Encefálicas/genética , Resistencia a Antineoplásicos , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Nanoscale Adv ; 5(6): 1636-1650, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36926569

RESUMEN

In biological studies and diagnoses, brightfield (BF), fluorescence, and electron microscopy (EM) are used to image biomolecules inside cells. When compared, their relative advantages and disadvantages are obvious. BF microscopy is the most accessible of the three, but its resolution is limited to a few microns. EM provides a nanoscale resolution, but sample preparation is time-consuming. In this study, we present a new imaging technique, which we termed decoration microscopy (DecoM), and quantitative investigations to address the aforementioned issues in EM and BF microscopy. For molecular-specific EM imaging, DecoM labels proteins inside cells using antibodies bearing 1.4 nm gold nanoparticles (AuNPs) and grows silver layers on the AuNPs' surfaces. The cells are then dried without buffer exchange and imaged using scanning electron microscopy (SEM). Structures labeled with silver-grown AuNPs are clearly visible on SEM, even they are covered with lipid membranes. Using stochastic optical reconstruction microscopy, we show that the drying process causes negligible distortion of structures and that less structural deformation could be achieved through simple buffer exchange to hexamethyldisilazane. Using DecoM, we visualize the nanoscale alterations in microtubules by microtubule-severing proteins that cannot be observed with diffraction-limited fluorescence microscopy. We then combine DecoM with expansion microscopy to enable sub-micron resolution BF microscopy imaging. We first show that silver-grown AuNPs strongly absorb white light, and the structures labeled with them are clearly visible on BF microscopy. We then show that the application of AuNPs and silver development must follow expansion to visualize the labeled proteins clearly with sub-micron resolution.

14.
Front Cell Neurosci ; 16: 1083159, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605616

RESUMEN

Neurodegenerative diseases (NDDs) are characterized by the progressive loss of selectively vulnerable populations of neurons, which is responsible for the clinical symptoms. Although degeneration of neurons is a prominent feature that undoubtedly contributes to and defines NDD pathology, it is now clear that neuronal cell death is by no means mediated solely by cell-autonomous mechanisms. Oligodendrocytes (OLs), the myelinating cells of the central nervous system (CNS), enable rapid transmission of electrical signals and provide metabolic and trophic support to neurons. Recent evidence suggests that OLs and their progenitor population play a role in the onset and progression of NDDs. In this review, we discuss emerging evidence suggesting a role of OL lineage cells in the pathogenesis of age-related NDDs. We start with multiple system atrophy, an NDD with a well-known oligodendroglial pathology, and then discuss Alzheimer's disease (AD) and Parkinson's disease (PD), NDDs which have been thought of as neuronal origins. Understanding the functions and dysfunctions of OLs might lead to the advent of disease-modifying strategies against NDDs.

15.
Genes (Basel) ; 12(4)2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805527

RESUMEN

Parkinson's disease (PD) is a heterogeneous neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the widespread occurrence of proteinaceous inclusions known as Lewy bodies and Lewy neurites. The etiology of PD is still far from clear, but aging has been considered as the highest risk factor influencing the clinical presentations and the progression of PD. Accumulating evidence suggests that aging and PD induce common changes in multiple cellular functions, including redox imbalance, mitochondria dysfunction, and impaired proteostasis. Age-dependent deteriorations in cellular dysfunction may predispose individuals to PD, and cellular damages caused by genetic and/or environmental risk factors of PD may be exaggerated by aging. Mutations in the LRRK2 gene cause late-onset, autosomal dominant PD and comprise the most common genetic causes of both familial and sporadic PD. LRRK2-linked PD patients show clinical and pathological features indistinguishable from idiopathic PD patients. Here, we review cellular dysfunctions shared by aging and PD-associated LRRK2 mutations and discuss how the interplay between the two might play a role in PD pathologies.


Asunto(s)
Envejecimiento/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación , Enfermedad de Parkinson/patología , Envejecimiento/genética , Humanos , Enfermedad de Parkinson/genética
16.
J Cell Biol ; 169(4): 657-67, 2005 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-15911880

RESUMEN

Ca(2+) is a highly versatile intracellular signal that regulates many different cellular processes, and cells have developed mechanisms to have exquisite control over Ca(2+) signaling. Epidermal growth factor (EGF), which fails to mobilize intracellular Ca(2+) when administrated alone, becomes capable of evoking [Ca(2+)](i) increase and exocytosis after bradykinin (BK) stimulation in chromaffin cells. Here, we provide evidence that this sensitization process is coordinated by a macromolecular signaling complex comprised of inositol 1,4,5-trisphosphate receptor type I (IP(3)R1), cAMP-dependent protein kinase (PKA), EGF receptor (EGFR), and an A-kinase anchoring protein, yotiao. The IP(3)R complex functions as a focal point to promote Ca(2+) release in two ways: (1) it facilitates PKA-dependent phosphorylation of IP(3)R1 in response to BK-induced elevation of cAMP, and (2) it couples the plasmalemmal EGFR with IP(3)R1 at the Ca(2+) store located juxtaposed to the plasma membrane. Our study illustrates how the junctional membrane IP(3)R complex connects different signaling pathways to define the fidelity and specificity of Ca(2+) signaling.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Membrana Celular/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Uniones Intercelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Anclaje a la Quinasa A , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Bradiquinina/metabolismo , Bradiquinina/farmacología , Señalización del Calcio/efectos de los fármacos , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas del Citoesqueleto/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB , Exocitosis/efectos de los fármacos , Exocitosis/fisiología , Glicoproteínas/efectos de los fármacos , Glicoproteínas/metabolismo , Receptores de Inositol 1,4,5-Trifosfato , Células PC12 , Fosforilación/efectos de los fármacos , Ratas , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
17.
BMB Rep ; 52(9): 533-539, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31383252

RESUMEN

Recent evidence from genetics, animal model systems and biochemical studies suggests that defects in membrane trafficking play an important part in the pathophysiology of Parkinson's disease (PD). Mutations in leucine-rich repeat kinase 2 (LRRK2) constitute the most frequent genetic cause of both familial and sporadic PD, and LRRK2 has been suggested as a druggable target for PD. Although the precise physiological function of LRRK2 remains largely unknown, mounting evidence suggests that LRRK2 controls membrane trafficking by interacting with key regulators of the endosomal-lysosomal pathway and synaptic recycling. In this review, we discuss the genetic, biochemical and functional links between LRRK2 and membrane trafficking. Understanding the mechanism by which LRRK2 influences such processes may contribute to the development of disease-modifying therapies for PD. [BMB Reports 2019; 52(9): 533-539].


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Membrana Celular/metabolismo , Humanos , Transporte de Proteínas/fisiología
18.
Cell Rep ; 26(5): 1357-1367.e5, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699360

RESUMEN

Katanin was the first microtubule (MT)-severing enzyme discovered, but how katanin executes MT severing remains poorly understood. Here, we report X-ray crystal structures of the apo and ATPγS-bound states of the catalytic AAA domain of human katanin p60 at 3.0 and 2.9 Å resolution, respectively. Comparison of the two structures reveals conformational changes induced by ATP binding and how such changes ensure hexamer stability. Moreover, we uncover structural details of pore loops (PLs) and show that Arg283, a residue unique to katanin among MT-severing enzymes, protrudes from PL1 and lines the entry of the catalytic pore. Functional studies suggest that PL1 and Arg283 play essential roles in the recognition and remodeling of the glutamylated, C-terminal tubulin tail and regulation of axon growth. In addition, domain-swapping experiments in katanin and spastin suggest that the non-homologous N-terminal region, which contains the MT-interacting and trafficking domain and a linker, confers specificity to the severing process.


Asunto(s)
Glutamatos/metabolismo , Katanina/química , Katanina/metabolismo , Microtúbulos/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Arginina/metabolismo , Axones/metabolismo , Células HeLa , Humanos , Ratones Endogámicos ICR , Modelos Moleculares , Mutación/genética , Dominios Proteicos , Multimerización de Proteína , Células Receptoras Sensoriales/metabolismo , Espastina/metabolismo
19.
Cell Death Dis ; 9(11): 1125, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420654

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2), originally identified as a causative genetic factor in Parkinson's disease, is now associated with a number of pathologies. Here, we show that brain injury induces a robust expression of endogenous LRRK2 and suggest a role of LRRK2 after injury. We found that various in vitro and in vivo models of traumatic brain injury (TBI) markedly enhanced LRRK2 expression in neurons and also increased the level of hypoxia-inducible factor (HIF)-1α. Luciferase reporter assay and chromatin immunoprecipitation revealed direct binding of HIF-1α in LRRK2 proximal promoter. We also found that HIF-1α-dependent transcriptional induction of LRRK2 exacerbated neuronal cell death following injury. Furthermore, application of G1023, a specific, brain-permeable inhibitor of LRRK2, substantially prevented brain tissue damage, cell death, and inflammatory response and alleviated motor and cognitive defects induced by controlled cortical impact injury. Together, these results suggest HIF-1α-LRRK2 axis as a potential therapeutic target for brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo/genética , Corteza Cerebral/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Transcripción Genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Secuencia de Bases , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/prevención & control , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Femenino , Regulación de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Ratones , Ratones Endogámicos ICR , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Cultivo Primario de Células , Regiones Promotoras Genéticas , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Desempeño Psicomotor/efectos de los fármacos , Transducción de Señal
20.
Mol Neurodegener ; 13(1): 8, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29439717

RESUMEN

BACKGROUND: Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and sporadic Parkinson's disease (PD). Elevated kinase activity is associated with LRRK2 toxicity, but the substrates that mediate neurodegeneration remain poorly defined. Given the increasing evidence suggesting a role of LRRK2 in membrane and vesicle trafficking, here we systemically screened Rab GTPases, core regulators of vesicular dynamics, as potential substrates of LRRK2 and investigated the functional consequence of such phosphorylation in cells and in vivo. METHODS: In vitro LRRK2 kinase assay with forty-five purified human Rab GTPases was performed to identify Rab family proteins as substrates of LRRK2. We identified the phosphorylation site by tandem mass-spectrometry and confirmed it by assessing phosphorylation in the in vitro LRRK2 kinase assay and in cells. Effects of Rab phosphorylation on neurodegeneration were examined in primary cultures and in vivo by intracranial injection of adeno-associated viral vectors (AAV) expressing wild-type or phosphomutants of Rab35. RESULTS: Our screening revealed that LRRK2 phosphorylated several Rab GTPases at a conserved threonine residue in the switch II region, and by using the kinase-inactive LRRK2-D1994A and the pathogenic LRRK2-G2019S along with Rab proteins in which the LRRK2 site was mutated, we verified that a subset of Rab proteins, including Rab35, were authentic substrates of LRRK2 both in vitro and in cells. We also showed that phosphorylation of Rab regulated GDP/GTP-binding property in cells. Moreover, in primary cortical neurons, mutation of the LRRK2 site in several Rabs caused neurotoxicity, which was most severely induced by phosphomutants of Rab35. Furthermore, intracranial injection of the AAV-Rab35 -T72A or AAV-Rab35-T72D into the substantia nigra substantially induced degeneration of dopaminergic neurons in vivo. CONCLUSIONS: Here we show that a subset of Rab GTPases are authentic substrates of LRRK2 both in vitro and in cells. We also provide evidence that dysregulation of Rab phosphorylation in the LRRK2 site induces neurotoxicity in primary neurons and degeneration of dopaminergic neurons in vivo. Our study suggests that Rab GTPases might mediate LRRK2 toxicity in the progression of PD.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Degeneración Nerviosa/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Mutación , Degeneración Nerviosa/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA