Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Infect Dis ; 24(1): 488, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741059

RESUMEN

BACKGROUND: Prioritizing prevention over treatment has been a longstanding principle in the world health system. This study aims to compare the demographic changes, mortality, clinical, and paraclinical findings of patients hospitalized in the Corona ward before and after the start of general vaccination. METHODS: This cross-sectional study utilized the simple random sampling method in 2022, analyzing 300 medical records of patients admitted to the Corona ward at 22 Bahman Khaf Hospital. Data were collected using a checklist with the help of the Medical Care Monitoring System and analyzed using SPSS-22 statistical software and Chi-square statistical test at a significance level of p < 0.05. RESULTS: Before the start of general vaccination for COVID-19, the majority of patients were hospitalized in the Corona Intensive Care Unit (59.3%), aged between 51 and 65 years (47.3%), hospitalized for more than 3 days (54%), required intubation (49.3%), had SPO2 < 93% (60.7%), and exhibited common symptoms such as cough, shortness of breath, and loss of consciousness. Paraclinical findings included positive CRP, decreased lymphocytes, and ground glass opacity (GGO). After the start of general vaccination for COVID-19, most patients were hospitalized in the general care department of Corona (68%), aged between 36 and 50 years (47.3%), hospitalized for less than three days (66%), required intubation (20%), had SPO2 ≥ 93% (77.3%), and exhibited common symptoms such as weakness, headache, and body pain. Paraclinical findings were within the normal range. CONCLUSIONS: General vaccination for COVID-19 has significantly reduced patient mortality and morbidity. Health policymakers should prioritize general vaccination to achieve herd immunity and improve public health.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Hospitalización , SARS-CoV-2 , Vacunación , Humanos , COVID-19/mortalidad , COVID-19/prevención & control , COVID-19/epidemiología , Persona de Mediana Edad , Masculino , Femenino , Anciano , Estudios Transversales , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Vacunación/estadística & datos numéricos , Hospitalización/estadística & datos numéricos , Adulto , SARS-CoV-2/inmunología , Unidades de Cuidados Intensivos/estadística & datos numéricos
2.
Med Res Rev ; 43(5): 1263-1321, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36951271

RESUMEN

Gastrointestinal (GI) tumors (cancers of the esophagus, gastric, liver, pancreas, colon, and rectum) contribute to a large number of deaths worldwide. STAT3 is an oncogenic transcription factor that promotes the transcription of genes associated with proliferation, antiapoptosis, survival, and metastasis. STAT3 is overactivated in many human malignancies including GI tumors which accelerates tumor progression, metastasis, and drug resistance. Research in recent years demonstrated that noncoding RNAs (ncRNAs) play a major role in the regulation of many signaling pathways including the STAT3 pathway. The major types of endogenous ncRNAs that are being extensively studied in oncology are microRNAs, long noncoding RNAs, and circular RNAs. These ncRNAs can either be tumor-promoters or tumor-suppressors and each one of them imparts their activity via different mechanisms. The STAT3 pathway is also tightly modulated by ncRNAs. In this article, we have elaborated on the tumor-promoting role of STAT3 signaling in GI tumors. Subsequently, we have comprehensively discussed the oncogenic as well as tumor suppressor functions and mechanism of action of ncRNAs that are known to modulate STAT3 signaling in GI cancers.


Asunto(s)
Neoplasias Gastrointestinales , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Neoplasias Gastrointestinales/genética , Transducción de Señal , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
3.
Med Res Rev ; 43(6): 2115-2176, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37165896

RESUMEN

Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Neoplasias , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Inmunoterapia , Terapia Genética , Nanopartículas/química , Microambiente Tumoral
4.
Pharmacol Res ; 190: 106732, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36931542

RESUMEN

High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/ß-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , ARN Circular/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética , Proteína HMGA2/metabolismo
5.
Pharmacol Res ; 187: 106582, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436707

RESUMEN

Cancer is the manifestation of changes and mutations in genetic and epigenetic levels. Non-coding RNAs (ncRNAs) are commonly dysregulated in disease pathogenesis, and their role in cancer has been well-documented. The ncRNAs regulate various molecular pathways and mechanisms in cancer that can lead to induction/inhibition of carcinogenesis. Autophagy is a molecular "self-digestion" mechanism its function can be pro-survival or pro-death in tumor cells. The aim of the present review is to evaluate the role of ncRNAs in regulating autophagy in gastrointestinal tumors. The role of the ncRNA/autophagy axis in affecting the progression of gastric, liver, colorectal, pancreatic, esophageal, and gallbladder cancers is investigated. Both ncRNAs and autophagy mechanisms can function as oncogenic or onco-suppressor and this interaction can determine the growth, invasion, and therapy response of gastrointestinal tumors. ncRNA/autophagy axis can reduce/increase the proliferation of gastrointestinal tumors via the glycolysis mechanism. Furthermore, related molecular pathways of metastasis, such as EMT and MMPs, are affected by the ncRNA/autophagy axis. The response of gastrointestinal tumors to chemotherapy and radiotherapy can be suppressed by pro-survival autophagy, and ncRNAs are essential regulators of this mechanism. miRNAs can regulate related genes and proteins of autophagy, such as ATGs and Beclin-1. Furthermore, lncRNAs and circRNAs down-regulate miRNA expression via sponging to modulate the autophagy mechanism. Moreover, anti-cancer agents can affect the expression level of ncRNAs regulating autophagy in gastrointestinal tumors. Therefore, translating these findings into clinics can improve the prognosis of patients.


Asunto(s)
Autofagia , Epigénesis Genética , Neoplasias Gastrointestinales , MicroARNs , Humanos , Autofagia/genética , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/patología , MicroARNs/genética , MicroARNs/metabolismo
6.
Mol Cell Probes ; 71: 101930, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37690573

RESUMEN

BACKGROUND: Breast cancer (BC) has been identified as a significant contributor to the rising number of female cancer deaths. As, it has become clear that breast cancer development depends on the interplay of several biological factors against a single molecule. This research aimed to use proteomics to gain a regulatory and metabolic understanding of BC pathophysiology. METHOD: For the study, a breast cancer proteomics dataset was downloaded from ProteomeXchange and then analyzed by employing MaxQuant and Perseus. Functional enrichment analysis through Metascape and Cytoscape software showed DEPs related biomedical phenomena with potential abruption. The expression of selected lncRNA in terms of the highest connectivity parameters was then quantitatively assessed through RT-PCR in 30 tumor tissues of breast cancer patients, as compared to the adjacent healthy ones. RESULT: The results indicated that among the 3048 identified proteins, 1149 were differentially expressed, which could be mainly enriched in several key terms. Furthermore, the obtained findings revealed that ITGB1-DT was significantly overexpressed in tumor tissues. Moreover, we found five potential compounds that could be attributed to ITGB1-DT targets (ATN-161, Firategrast, SB-683698, dabigatran-etexilate, and tranexamic-acid). CONCLUSION: These analyses proposed that ITGB1-DT could be employed as a differentiated factor to identify breast tumor tissues in healthy samples. Besides this, Firategrast could be introduced as a potential remedial agent for breast cancer patients. Overall, from the analysis of a proteomics dataset, an integrative map was generated, and a novel biomarker that may have been implicated in the early detection of BC was introduced.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteómica , Biomarcadores , Biología Computacional
7.
Environ Res ; 239(Pt 1): 117117, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37805185

RESUMEN

INTRODUCTION: Colorectal cancer (CRC) is one of the most malignant tumors and in which various efforts for screening is inconclusive.The intracrine FGF panel, the non-tyrosine kinase receptors (NTKR) FGFs and affiliated antisenses play a pivotal role in FGF signaling.The expression levels of coding and non-coding intracrine FGFs were assessed in CRC donors.Also, substantial costs and slow pace of drug discovery give high attraction to repurpose of previously discovered drugs to new opportunities. OBJECTIVES: The aim of present study was to evaluate the potential role of the coding and non-coding intracrine FGFs as a new biomarkers for CRC cases and defining drug repurposing to alleviate FGF down regulation. METHODS: RNA-seq data of colon adenocarcinomas (COAD) was downloaded using TCGA biolinks package in R.The DrugBank database (https://go.drugbank.com/) was used to extract interactions between drugs and candidate genes. A total of 200 CRC patients with detailed criteria were enrolled.RNAs were extracted with TRIzol-based protocol and amplified via LightCycler® instrument.FGF11 and FGF13 proteins validation was performed by used of immunohistochemistry technique in tumor and non-tumoral samples.Pearson's correlation analysis and ROC curve plotted by Prism 8.0 software. RESULTS: RNA-seq data from TCGA was analyzed by normalizing with edgeR.Differentially expressed gene (DEG) analysis was generated. WCC algorithm extracted the most significant genes with a total of 47 genes. Expression elevation of iFGF antisenses (12AS,13As,14AS) compared with the normal colon tissue were observed (P = 0.0003,P = 0.042,P = 0.026, respectively). Moreover,a significant decrease in expression of the corresponding sense iFGF genes was detected (P < 0.0001).Plotted receiver operating characteristic (ROC) curves for iFGF components' expression showed an area of over 0.70 (FGF11-13: 0.71% and FGF12-14: 0.78%, P < 0.001) for sense mRNA expression, with the highest sensitivity for FGF12 (92.8%) and lowest for FGF11 (61.41%).The artificial intelligence (AI) revealed the valproic acid as a repurposing drug to relief the down regulation of FGF12 and 13 in CRC patients. CONCLUSION: Intracrine FGFs panel was down regulated versus up regulation of dependent antisenses. Thus, developing novel biomarkers based on iFGF can be considered as a promising strategy for CRC screening.In advanced, valporic acid detected by AI as a repurposing drug which may be applied in clinical trials for CRC treatment.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Inteligencia Artificial , Reposicionamiento de Medicamentos , Algoritmos , Biomarcadores , Nanopartículas/uso terapéutico , Factores de Crecimiento de Fibroblastos/genética
8.
Environ Res ; 237(Pt 2): 117027, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659647

RESUMEN

The latest advancements in oncology involves the creation of multifunctional nanostructures. The integration of nanoparticles into the realm of cancer therapy has brought about a transformative shift, revolutionizing the approach to addressing existing challenges and limitations in tumor elimination. This is particularly crucial in combating the emergence of resistance, which has significantly undermined the effectiveness of treatments like chemotherapy and radiotherapy. GO stands as a carbon-derived nanoparticle that is increasingly finding utility across diverse domains, notably in the realm of biomedicine. The utilization of GO nanostructures holds promise in the arena of oncology, enabling precise transportation of drugs and genetic material to targeted sites. GO nanomaterials offer the opportunity to enhance the pharmacokinetic behavior and bioavailability of drugs, with documented instances of these nanocarriers elevating drug accumulation at the tumor location. The GO nanostructures encapsulate genes, shielding them from degradation and facilitating their uptake within cancer cells, thereby promoting efficient gene silencing. The capability of GO to facilitate phototherapy has led to notable advancements in reducing tumor progression. By PDT and PTT combination, GO nanomaterials hold the capacity to diminish tumorigenesis. GO nanomaterials have the potential to trigger both cellular and innate immunity, making them promising contenders for vaccine development. Additionally, types of GO nanoparticles that respond to specific stimuli have been applied in cancer eradication, as well as for the purpose of cancer detection and biomarker diagnosis. Endocytosis serves as the mechanism through which GO nanomaterials are internalized. Given these advantages, the utilization of GO nanomaterials for tumor elimination comes highly recommended.

9.
Environ Res ; 238(Pt 1): 117087, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716390

RESUMEN

Hydrogels represent intricate three-dimensional polymeric structures, renowned for their compatibility with living systems and their ability to naturally degrade. These networks stand as promising and viable foundations for a range of biomedical uses. The practical feasibility of employing hydrogels in clinical trials has been well-demonstrated. Among the prevalent biomedical uses of hydrogels, a significant application arises in the context of wound healing. This intricate progression involves distinct phases of inflammation, proliferation, and remodeling, often triggered by trauma, skin injuries, and various diseases. Metabolic conditions like diabetes have the potential to give rise to persistent wounds, leading to delayed healing processes. This current review consolidates a collection of experiments focused on the utilization of hydrogels to expedite the recovery of wounds. Hydrogels have the capacity to improve the inflammatory conditions at the wound site, and they achieve this by diminishing levels of reactive oxygen species (ROS), thereby exhibiting antioxidant effects. Hydrogels have the potential to enhance the growth of fibroblasts and keratinocytes at the wound site. They also possess the capability to inhibit both Gram-positive and Gram-negative bacteria, effectively managing wounds infected by drug-resistant bacteria. Hydrogels can trigger angiogenesis and neovascularization processes, while also promoting the M2 polarization of macrophages, which in turn mitigates inflammation at the wound site. Intelligent and versatile hydrogels, encompassing features such as pH sensitivity, reactivity to reactive oxygen species (ROS), and responsiveness to light and temperature, have proven advantageous in expediting wound healing. Furthermore, hydrogels synthesized using environmentally friendly methods, characterized by high levels of biocompatibility and biodegradability, hold the potential for enhancing the wound healing process. Hydrogels can facilitate the controlled discharge of bioactive substances. More recently, there has been progress in the creation of conductive hydrogels, which, when subjected to electrical stimulation, contribute to the enhancement of wound healing. Diabetes mellitus, a metabolic disorder, leads to a slowdown in the wound healing process, often resulting in the formation of persistent wounds. Hydrogels have the capability to expedite the healing of diabetic wounds, facilitating the transition from the inflammatory phase to the proliferative stage. The current review sheds light on the biological functionalities of hydrogels, encompassing their role in modulating diverse mechanisms and cell types, including inflammation, oxidative stress, macrophages, and bacteriology. Additionally, this review emphasizes the significance of smart hydrogels with responsiveness to external stimuli, as well as conductive hydrogels for promoting wound healing. Lastly, the discussion delves into the advancement of environmentally friendly hydrogels with high biocompatibility, aimed at accelerating the wound healing process.


Asunto(s)
Diabetes Mellitus , Hidrogeles , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Medicina de Precisión , Bacterias Gramnegativas , Bacterias Grampositivas , Cicatrización de Heridas , Inflamación
10.
Environ Res ; 225: 115673, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906270

RESUMEN

The application of nanoarchitectures in cancer therapy seems to be beneficial for the delivery of antitumor drugs. In recent years, attempts have been made to reverse drug resistance, one of the factors threatening the lives of cancer patients worldwide. Gold nanoparticles (GNPs) are metal nanostructures with a variety of advantageous properties, such as tunable size and shape, continuous release of chemicals, and simple surface modification. This review focuses on the application of GNPs for the delivery of chemotherapy agents in cancer therapy. Utilizing GNPs results in targeted delivery and increased intracellular accumulation. Besides, GNPs can provide a platform for the co-delivery of anticancer agents and genetic tools with chemotherapeutic compounds to exert a synergistic impact. Furthermore, GNPs can promote oxidative damage and apoptosis by triggering chemosensitivity. Due to their capacity for providing photothermal therapy, GNPs can enhance the cytotoxicity of chemotherapeutic agents against tumor cells. The pH-, redox-, and light-responsive GNPs are beneficial for drug release at the tumor site. For the selective targeting of cancer cells, surface modification of GNPs with ligands has been performed. In addition to improving cytotoxicity, GNPs can prevent the development of drug resistance in tumor cells by facilitating prolonged release and loading low concentrations of chemotherapeutics while maintaining their high antitumor activity. As described in this study, the clinical use of chemotherapeutic drug-loaded GNPs is contingent on enhancing their biocompatibility.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Neoplasias , Humanos , Oro/química , Nanopartículas del Metal/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias/tratamiento farmacológico , Resistencia a Medicamentos
11.
Cell Mol Biol Lett ; 28(1): 33, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085753

RESUMEN

Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial-mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Factor de Transcripción STAT3 , Humanos , Carcinogénesis/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Factor de Transcripción STAT3/metabolismo
12.
J Cell Physiol ; 237(7): 2770-2795, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35561232

RESUMEN

Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-ß, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.


Asunto(s)
Transición Epitelial-Mesenquimal , FN-kappa B , Animales , Línea Celular Tumoral , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Neoplasias/patología , Transducción de Señal , Factor de Crecimiento Transformador beta/genética
13.
J Cell Physiol ; 237(1): 450-465, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34569616

RESUMEN

Acute myeloid leukemia (AML) is a common hematological disorder with heterogeneous nature that resulted from blocked myeloid differentiation and an enhanced number of immature myeloid progenitors. During several decades, different factors, including cytogenetic, genetic, and epigenetic have been reported to contribute to the pathogenesis of AML by inhibiting the differentiation and ensuring the proliferation of myeloid blast cells. Recently, long noncoding RNAs (lncRNAs) have been considered as potential diagnostic, therapeutic, and prognostic factors in different human malignancies including AML. Altered expression of lncRNAs is correlated with the transformation of hematopoietic stem and progenitor cells into leukemic blast cells because of their distinct role in the key cellular processes. We discuss the significant role of lncRNAs in the proliferation, survival, differentiation, leukemic stem cells in AML and their involvement in different molecular pathways (insulin-like growth factor type I receptor, FLT3, c-KIT, Wnt, phosphatidylinositol 3-kinase/protein kinase-B, microRNAs), and associated mechanisms such as autophagy, apoptosis, and glucose metabolism. In addition, we aim to highlight the role of lncRNAs as reliable biomarkers for diagnosis, prognosis, and drug resistance for precision medicine in AML.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , ARN Largo no Codificante , Carcinogénesis , Resistencia a Medicamentos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , MicroARNs/genética , MicroARNs/uso terapéutico , ARN Largo no Codificante/metabolismo
14.
J Cell Physiol ; 237(5): 2309-2344, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35437787

RESUMEN

The identification of agents that can reverse drug resistance in cancer chemotherapy, and enhance the overall efficacy is of great interest. Paclitaxel (PTX) belongs to taxane family that exerts an antitumor effect by stabilizing microtubules and inhibiting cell cycle progression. However, PTX resistance often develops in tumors due to the overexpression of drug transporters and tumor-promoting pathways. Noncoding RNAs (ncRNAs) are modulators of many processes in cancer cells, such as apoptosis, migration, differentiation, and angiogenesis. In the present study, we summarize the effects of ncRNAs on PTX chemotherapy. MicroRNAs (miRNAs) can have opposite effects on PTX resistance (stimulation or inhibition) via influencing YES1, SK2, MRP1, and STAT3. Moreover, miRNAs modulate the growth and migration rates of tumor cells in regulating PTX efficacy. PIWI-interacting RNAs, small interfering RNAs, and short-hairpin RNAs are other members of ncRNAs regulating PTX sensitivity of cancer cells. Long noncoding RNAs (LncRNAs) are similar to miRNAs and can modulate PTX resistance/sensitivity by their influence on miRNAs and drug efflux transport. The cytotoxicity of PTX against tumor cells can also be affected by circular RNAs (circRNAs) and limitation is that oncogenic circRNAs have been emphasized and experiments should also focus on onco-suppressor circRNAs.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Resistencia a Medicamentos , Resistencia a Antineoplásicos/genética , Humanos , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , ARN Circular/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética
15.
Phytother Res ; 36(1): 189-213, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34697839

RESUMEN

Curcumin is a phytochemical isolated from Curcuma longa with potent tumor-suppressor activity, which has shown significant efficacy in pre-clinical and clinical studies. Curcumin stimulates cell death, triggers cycle arrest, and suppresses oncogenic pathways, thereby suppressing cancer progression. Cisplatin (CP) stimulates DNA damage and apoptosis in cancer chemotherapy. However, CP has adverse effects on several organs of the body, and drug resistance is frequently observed. The purpose of the present review is to show the function of curcumin in decreasing CP's adverse impacts and improving its antitumor activity. Curcumin administration reduces ROS levels to prevent apoptosis in normal cells. Furthermore, curcumin can inhibit inflammation via down-regulation of NF-κB to maintain the normal function of organs. Curcumin and its nanoformulations can reduce the hepatoxicity, neurotoxicity, renal toxicity, ototoxicity, and cardiotoxicity caused by CP. Notably, curcumin potentiates CP cytotoxicity via mediating cell death and cycle arrest. Besides, curcumin suppresses the STAT3 and NF-ĸB as tumor-promoting pathways, to enhance CP sensitivity and prevent drug resistance. The targeted delivery of curcumin and CP to tumor cells can be mediated nanostructures. In addition, curcumin derivatives are also able to reduce CP-mediated side effects, and increase CP cytotoxicity against various cancer types.


Asunto(s)
Antineoplásicos , Curcumina , Neoplasias , Antineoplásicos/farmacología , Apoptosis , Cisplatino/farmacología , Curcumina/farmacología , Humanos , Neoplasias/tratamiento farmacológico
16.
Expert Rev Mol Med ; 23: e13, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34583803

RESUMEN

The proliferation, metastasis and therapy response of tumour cells are tightly regulated by interaction among various signalling networks. The microRNAs (miRNAs) can bind to 3'-UTR of mRNA and down-regulate expression of target gene. The miRNAs target various molecular pathways in regulating biological events such as apoptosis, differentiation, angiogenesis and migration. The aberrant expression of miRNAs occurs in cancers and they have both tumour-suppressor and tumour-promoting functions. On the contrary, SOX proteins are capable of binding to DNA and regulating gene expression. SOX2 is a well-known member of SOX family that its overexpression in different cancers to ensure progression and stemness. The present review focuses on modulatory impact of miRNAs on SOX2 in affecting growth, migration and therapy response of cancers. The lncRNAs and circRNAs can function as upstream mediators of miRNA/SOX2 axis in cancers. In addition, NF-κB, TNF-α and SOX17 are among other molecular pathways regulating miRNA/SOX2 axis in cancer. Noteworthy, anti-cancer compounds including bufalin and ovatodiolide are suggested to regulate miRNA/SOX2 axis in cancers. The translation of current findings to clinical course can pave the way to effective treatment of cancer patients and improve their prognosis.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Neoplasias/genética , Neoplasias/terapia , ARN Circular , Factores de Transcripción SOXB1/genética
17.
Pharmacol Res ; 164: 105327, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276098

RESUMEN

Based on the high incidence and mortality rates of cancer, its therapy remains one of the most vital challenges in the field of medicine. Consequently, enhancing the efficacy of currently applied treatments and finding novel strategies are of great importance for cancer treatment. Venoms are important sources of a variety of bioactive compounds including salts, small molecules, macromolecules, proteins, and peptides that are defined as toxins. They can exhibit different pharmacological effects, and in recent years, their anti-tumor activities have gained significant attention. Several different compounds are responsible for the anti-tumor activity of venoms, and peptides are one of them. In the present review, we discuss the possible anti-tumor activities of venom peptides by highlighting molecular pathways and mechanisms through which these molecules can act effectively. Venom peptides can induce cell death in cancer cells and can substantially enhance the efficacy of chemotherapy and radiotherapy. Also, the venom peptides can mitigate the migration of cancer cells via suppression of angiogenesis and epithelial-to-mesenchymal transition. Notably, nanoparticles have been applied in enhancing the bioavailability of venom peptides and providing targeted delivery, thereby leading to their elevated anti-tumor activity and potential application for cancer therapy.


Asunto(s)
Neoplasias/tratamiento farmacológico , Péptidos/administración & dosificación , Ponzoñas/química , Animales , Sistemas de Liberación de Medicamentos , Vectores Genéticos , Humanos , Nanotecnología , Péptidos/genética , ARN no Traducido
18.
Pharmacol Res ; 167: 105575, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33771701

RESUMEN

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a vital transcription factor and its induction is of significant importance for protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) stimulate Nrf2 signaling, enhancing the activity of antioxidant enzymes such as catalase, superoxide dismutase and glutathione peroxidase. These enzymes are associated with retarding oxidative stress. On the other hand, Nrf2 activation in cancer cells is responsible for the development of chemoresistance due to disrupting oxidative mediated-cell death by reducing ROS levels. Cisplatin (CP), cis-diamminedichloroplatinum(II), is a potent anti-tumor agent extensively used in cancer therapy, but its frequent application leads to the development of chemoresistance as well. In the present study, association of Nrf2 signaling with chemoresistance to CP and protection against its deleterious effects is discussed. Anti-tumor compounds, mainly phytochemicals, retard chemoresistance by suppressing Nrf2 signaling. Upstream mediators such as microRNAs can regulate Nrf2 expression during CP chemotherapy regimens. Protection against side effects of CP is mediated via activating Nrf2 signaling and its downstream targets activating antioxidant defense system. Protective agents that activate Nrf2 signaling, can ameliorate CP-mediated ototoxicity, nephrotoxicity and neurotoxicity. Reducing ROS levels and preventing cell death are the most important factors involved in alleviating CP toxicity upon Nrf2 activation. As pre-clinical experiments advocate the role of Nrf2 in chemoprotection and CP resistance, translating these findings to the clinic can provide a significant progress in treatment of cancer patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Cisplatino/farmacología , Humanos , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Phytother Res ; 35(1): 155-179, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33507609

RESUMEN

In respect to the enhanced incidence rate of cancer worldwide, studies have focused on cancer therapy using novel strategies. Chemotherapy is a common strategy in cancer therapy, but its adverse effects and chemoresistance have limited its efficacy. So, attempts have been directed towards minimally invasive cancer therapy using plant derived-natural compounds. Cryptotanshinone (CT) is a component of salvia miltiorrihiza Bunge, well-known as Danshen and has a variety of therapeutic and biological activities such as antioxidant, anti-inflammatory, anti-diabetic and neuroprotective. Recently, studies have focused on anti-tumor activity of CT against different cancers. Notably, this herbal compound is efficient in cancer therapy by targeting various molecular signaling pathways. In the present review, we mechanistically describe the anti-tumor activity of CT with an emphasis on molecular signaling pathways. Then, we evaluate the potential of CT in cancer immunotherapy and enhancing the efficacy of chemotherapy by sensitizing cancer cells into anti-tumor activity of chemotherapeutic agents, and elevating accumulation of anti-tumor drugs in cancer cells. Finally, we mention strategies to enhance the anti-tumor activity of CT, for instance, using nanoparticles to provide targeted drug delivery.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Fenantrenos/uso terapéutico , Animales , Antineoplásicos/farmacología , Humanos , Fenantrenos/farmacología
20.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769099

RESUMEN

As a multifactorial disease, treatment of cancer depends on understanding unique mechanisms involved in its progression. The cancer stem cells (CSCs) are responsible for tumor stemness and by enhancing colony formation, proliferation as well as metastasis, and these cells can also mediate resistance to therapy. Furthermore, the presence of CSCs leads to cancer recurrence and therefore their complete eradication can have immense therapeutic benefits. The present review focuses on targeting CSCs by natural products in cancer therapy. The growth and colony formation capacities of CSCs have been reported can be attenuated by the dietary agents. These compounds can induce apoptosis in CSCs and reduce tumor migration and invasion via EMT inhibition. A variety of molecular pathways including STAT3, Wnt/ß-catenin, Sonic Hedgehog, Gli1 and NF-κB undergo down-regulation by dietary agents in suppressing CSC features. Upon exposure to natural agents, a significant decrease occurs in levels of CSC markers including CD44, CD133, ALDH1, Oct4 and Nanog to impair cancer stemness. Furthermore, CSC suppression by dietary agents can enhance sensitivity of tumors to chemotherapy and radiotherapy. In addition to in vitro studies, as well as experiments on the different preclinical models have shown capacity of natural products in suppressing cancer stemness. Furthermore, use of nanostructures for improving therapeutic impact of dietary agents is recommended to rapidly translate preclinical findings for clinical use.


Asunto(s)
Neoplasias/dietoterapia , Células Madre Neoplásicas , Fitoquímicos/uso terapéutico , Fitoterapia , Extractos Vegetales/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA