Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 18(9): 963-971, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35676539

RESUMEN

Transmembrane protease, serine 2 (TMPRSS2) has been identified as key host cell factor for viral entry and pathogenesis of SARS-CoV-2. Specifically, TMPRSS2 proteolytically processes the SARS-CoV-2 Spike (S) protein, enabling virus-host membrane fusion and infection of the airways. We present here a recombinant production strategy for enzymatically active TMPRSS2 and characterization of its matured proteolytic activity, as well as its 1.95 Å X-ray cocrystal structure with the synthetic protease inhibitor nafamostat. Our study provides a structural basis for the potent but nonspecific inhibition by nafamostat and identifies distinguishing features of the TMPRSS2 substrate binding pocket that explain specificity. TMPRSS2 cleaved SARS-CoV-2 S protein at multiple sites, including the canonical S1/S2 cleavage site. We ranked the potency of clinical protease inhibitors with half-maximal inhibitory concentrations ranging from 1.4 nM to 120 µM and determined inhibitor mechanisms of action, providing the groundwork for drug development efforts to selectively inhibit TMPRSS2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Humanos , Péptido Hidrolasas , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
2.
J Chem Inf Model ; 64(13): 5344-5355, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38916159

RESUMEN

We herewith applied a priori a generic hit identification method (POEM) for difficult targets of known three-dimensional structure, relying on the simple knowledge of physicochemical and topological properties of a user-selected cavity. Searching for local similarity to a set of fragment-bound protein microenvironments of known structure, a point cloud registration algorithm is first applied to align known subpockets to the target cavity. The resulting alignment then permits us to directly pose the corresponding seed fragments in a target cavity space not typically amenable to classical docking approaches. Last, linking potentially connectable atoms by a deep generative linker enables full ligand enumeration. When applied to the WD40 repeat (WDR) central cavity of leucine-rich repeat kinase 2 (LRRK2), an unprecedented binding site, POEM was able to quickly propose 94 potential hits, five of which were subsequently confirmed to bind in vitro to LRRK2-WDR.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Simulación del Acoplamiento Molecular , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Sitios de Unión , Dominios Proteicos , Humanos , Ligandos , Unión Proteica , Repeticiones WD40 , Algoritmos
3.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239916

RESUMEN

Obesity is characterized by low-grade inflammation and increased gut permeability. Here, we aim to evaluate the effect of a nutritional supplement on these parameters in subjects with overweight and obesity. A double-blinded, randomized clinical trial was conducted in 76 adults with overweight or obesity (BMI 28 to 40) and low-grade inflammation (high-sensitivity C-reactive protein (hs-CRP) between 2 and 10 mg/L). The intervention consisted of a daily intake of a multi-strain probiotic of Lactobacillus and Bifidobacterium, 640 mg of omega-3 fatty acids (n-3 FAs), and 200 IU of vitamin D (n = 37) or placebo (n = 39), administered for 8 weeks. hs-CRP levels did not change post-intervention, other than an unexpected slight increase observed in the treatment group. Interleukin (IL)-6 levels decreased in the treatment group (p = 0.018). The plasma fatty acid (FA) levels of the arachidonic acid (AA)/eicosapentaenoic acid (EPA) ratio and n-6/n-3 ratio (p < 0.001) decreased, and physical function and mobility improved in the treatment group (p = 0.006). The results suggest that hs-CRP may not be the most useful inflammatory marker, but probiotics, n-3 FAs, and vitamin D, as non-pharmaceutical supplements, may exert modest effects on inflammation, plasma FA levels, and physical function in patients with overweight and obesity and associated low-grade inflammation.


Asunto(s)
Proteína C-Reactiva , Probióticos , Adulto , Humanos , Proteína C-Reactiva/metabolismo , Sobrepeso , Inflamación/tratamiento farmacológico , Suplementos Dietéticos , Probióticos/uso terapéutico , Obesidad/terapia , Vitaminas , Vitamina D/uso terapéutico , Interleucina-6 , Método Doble Ciego
4.
PLoS Genet ; 15(12): e1008455, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31800589

RESUMEN

SLC18B1 is a sister gene to the vesicular monoamine and acetylcholine transporters, and the only known polyamine transporter, with unknown physiological role. We reveal that Slc18b1 knock out mice has significantly reduced polyamine content in the brain providing the first evidence that Slc18b1 is functionally required for regulating polyamine levels. We found that this mouse has impaired short and long term memory in novel object recognition, radial arm maze and self-administration paradigms. We also show that Slc18b1 KO mice have altered expression of genes involved in Long Term Potentiation, plasticity, calcium signalling and synaptic functions and that expression of components of GABA and glutamate signalling are changed. We further observe a partial resistance to diazepam, manifested as significantly lowered reduction in locomotion after diazepam treatment. We suggest that removal of Slc18b1 leads to reduction of polyamine contents in neurons, resulting in reduced GABA signalling due to long-term reduction in glutamatergic signalling.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Transporte de Catión/genética , Memoria a Largo Plazo , Memoria a Corto Plazo , Poliaminas/metabolismo , Animales , Señalización del Calcio , Técnicas de Inactivación de Genes , Ácido Glutámico/metabolismo , Aprendizaje por Laberinto , Ratones , Plasticidad Neuronal , Ácido gamma-Aminobutírico/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(28): 14164-14173, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31239348

RESUMEN

The cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) was identified >25 y ago; however, efforts to obtain a structure of the entire PKG enzyme or catalytic domain from any species have failed. In malaria parasites, cooperative activation of PKG triggers crucial developmental transitions throughout the complex life cycle. We have determined the cGMP-free crystallographic structures of PKG from Plasmodium falciparum and Plasmodium vivax, revealing how key structural components, including an N-terminal autoinhibitory segment (AIS), four predicted cyclic nucleotide-binding domains (CNBs), and a kinase domain (KD), are arranged when the enzyme is inactive. The four CNBs and the KD are in a pentagonal configuration, with the AIS docked in the substrate site of the KD in a swapped-domain dimeric arrangement. We show that although the protein is predominantly a monomer (the dimer is unlikely to be representative of the physiological form), the binding of the AIS is necessary to keep Plasmodium PKG inactive. A major feature is a helix serving the dual role of the N-terminal helix of the KD as well as the capping helix of the neighboring CNB. A network of connecting helices between neighboring CNBs contributes to maintaining the kinase in its inactive conformation. We propose a scheme in which cooperative binding of cGMP, beginning at the CNB closest to the KD, transmits conformational changes around the pentagonal molecule in a structural relay mechanism, enabling PKG to orchestrate rapid, highly regulated developmental switches in response to dynamic modulation of cGMP levels in the parasite.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/química , Malaria/genética , Plasmodium falciparum/química , Conformación Proteica , Secuencia de Aminoácidos/genética , Animales , Sitios de Unión/genética , Dominio Catalítico/genética , Cristalografía por Rayos X , GMP Cíclico/química , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/ultraestructura , Humanos , Cinética , Malaria/parasitología , Plasmodium falciparum/patogenicidad , Plasmodium falciparum/ultraestructura , Unión Proteica
6.
Neuropsychobiology ; 80(3): 253-263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33075780

RESUMEN

INTRODUCTION: Butyrate is a short-chain fatty acid metabolite produced by microbiota in the colon. With its antioxidant properties, butyrate has also been shown to alter the neurological functions in affective disorder models, suggesting it as a key mediator in gut-brain interactions. OBJECTIVE: Here, we evaluated the negative effect of oxidative stress on the transport of the serotonin precursor tryptophan as present in affective disorders. Butyrate was hypothesized to be able to rescue these deficits due to its antioxidative capacities and its effect on transmembrane transport of tryptophan. Human skin-derived fibroblasts were used as cellular models to address these objectives. METHODS: Human fibroblasts were treated with hydrogen peroxide to induce oxidative stress. Stressed as well as control cells were treated with different concentrations of butyrate. Tryptophan (3H) was used as a tracer to measure the transport of tryptophan across the cell membranes (n = 6). Furthermore, gene expression profiles of different amino acid transporters were analyzed (n = 2). RESULTS: As hypothesized,oxidative stress significantly decreased the uptake of tryptophan in fibroblast cells, while butyrate counteracted this effect. Oxidative stress did not alter the gene expression profile of amino acid transporters. However, treatment of stressed and control cells with different concentrations of butyrate differentially regulated the gene expression of large amino acid transporters 1 and 2, which are the major transporters of tryptophan. CONCLUSIONS: Gut microbiota-derived butyrate may have therapeutic potential in affective disorders characterized by either aberrant serotonergic activity or neuroinflammation due to its role in rescuing the oxidative stress-induced perturbations of tryptophan transport.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Encéfalo/metabolismo , Butiratos/metabolismo , Fibroblastos/metabolismo , Microbioma Gastrointestinal/fisiología , Expresión Génica/fisiología , Trastornos del Humor/metabolismo , Estrés Oxidativo/fisiología , Triptófano/metabolismo , Sistemas de Transporte de Aminoácidos/efectos de los fármacos , Butiratos/farmacología , Expresión Génica/efectos de los fármacos , Humanos , Trastornos del Humor/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos
7.
Nucleic Acids Res ; 47(3): 1225-1238, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30462309

RESUMEN

Aberrant isoform expression of chromatin-associated proteins can induce epigenetic programs related to disease. The MDS1 and EVI1 complex locus (MECOM) encodes PRDM3, a protein with an N-terminal PR-SET domain, as well as a shorter isoform, EVI1, lacking the N-terminus containing the PR-SET domain (ΔPR). Imbalanced expression of MECOM isoforms is observed in multiple malignancies, implicating EVI1 as an oncogene, while PRDM3 has been suggested to function as a tumor suppressor through an unknown mechanism. To elucidate functional characteristics of these N-terminal residues, we compared the protein interactomes of the full-length and ΔPR isoforms of PRDM3 and its closely related paralog, PRDM16. Unlike the ΔPR isoforms, both full-length isoforms exhibited a significantly enriched association with components of the NuRD chromatin remodeling complex, especially RBBP4. Typically, RBBP4 facilitates chromatin association of the NuRD complex by binding to histone H3 tails. We show that RBBP4 binds to the N-terminal amino acid residues of PRDM3 and PRDM16, with a dissociation constant of 3.0 µM, as measured by isothermal titration calorimetry. Furthermore, high-resolution X-ray crystal structures of PRDM3 and PRDM16 N-terminal peptides in complex with RBBP4 revealed binding to RBBP4 within the conserved histone H3-binding groove. These data support a mechanism of isoform-specific interaction of PRDM3 and PRDM16 with the NuRD chromatin remodeling complex.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteína del Locus del Complejo MDS1 y EV11/química , Proteína del Locus del Complejo MDS1 y EV11/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Animales , Línea Celular , Cristalografía por Rayos X , Humanos , Proteína del Locus del Complejo MDS1 y EV11/genética , Ratones , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteína 4 de Unión a Retinoblastoma/química , Proteína 4 de Unión a Retinoblastoma/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
8.
J Biol Chem ; 294(17): 6986-7001, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30842263

RESUMEN

The gene mutated in individuals with Huntington's disease (HD) encodes the 348-kDa huntingtin (HTT) protein. Pathogenic HD CAG-expansion mutations create a polyglutamine (polyQ) tract at the N terminus of HTT that expands above a critical threshold of ∼35 glutamine residues. The effect of these HD mutations on HTT is not well understood, in part because it is difficult to carry out biochemical, biophysical, and structural studies of this large protein. To facilitate such studies, here we have generated expression constructs for the scalable production of HTT in multiple eukaryotic expression systems. Our set of HTT expression clones comprised both N- and C-terminally FLAG-tagged HTT constructs with polyQ lengths representative of the general population, HD patients, and juvenile HD patients, as well as the more extreme polyQ expansions used in some HD tissue and animal models. Our expression system yielded milligram quantities of pure recombinant HTT protein, including many of the previously mapped post-translational modifications. We characterized both apo and HTT-HTT-associated protein 40 (HAP40) complex samples produced with this HD resource, demonstrating that this toolkit can be used to generate physiologically meaningful HTT complexes. We further demonstrate that these resources can produce sufficient material for protein-intensive experiments, such as small-angle X-ray scattering, providing biochemical insight into full-length HTT protein structure. The work outlined and the tools generated here lay a foundation for further biochemical and structural work on the HTT protein and for studying its functional interactions with other biomolecules.


Asunto(s)
Expresión Génica , Proteína Huntingtina/genética , Mutación , Animales , Clonación Molecular , Humanos , Proteína Huntingtina/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Spodoptera
9.
Nat Methods ; 13(4): 352-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26878383

RESUMEN

NADPH-dependent antioxidant pathways have a critical role in scavenging hydrogen peroxide (H2O2) produced by oxidative phosphorylation. Inadequate scavenging results in H2O2 accumulation and can cause disease. To measure NADPH/NADP(+) redox states, we explored genetically encoded sensors based on steady-state fluorescence anisotropy due to FRET (fluorescence resonance energy transfer) between homologous fluorescent proteins (homoFRET); we refer to these sensors as Apollo sensors. We created an Apollo sensor for NADP(+) (Apollo-NADP(+)) that exploits NADP(+)-dependent homodimerization of enzymatically inactive glucose-6-phosphate dehydrogenase (G6PD). This sensor is reversible, responsive to glucose-stimulated metabolism and spectrally tunable for compatibility with many other sensors. We used Apollo-NADP(+) to study beta cells responding to oxidative stress and demonstrated that NADPH is significantly depleted before H2O2 accumulation by imaging a Cerulean-tagged version of Apollo-NADP(+) with the H2O2 sensor HyPer.


Asunto(s)
Técnicas Biosensibles/métodos , Glucosafosfato Deshidrogenasa/metabolismo , Células Secretoras de Insulina/metabolismo , NADP/química , Células Cultivadas , Polarización de Fluorescencia/métodos , Transferencia Resonante de Energía de Fluorescencia , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/genética , Humanos , Peróxido de Hidrógeno/metabolismo , Procesamiento de Imagen Asistido por Computador , NADP/metabolismo , Oxidantes/metabolismo , Estrés Oxidativo , Conformación Proteica
10.
Nat Methods ; 12(8): 725-31, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26121405

RESUMEN

Antibodies are used in multiple cell biology applications, but there are no standardized methods to assess antibody quality-an absence that risks data integrity and reproducibility. We describe a mass spectrometry-based standard operating procedure for scoring immunoprecipitation antibody quality. We quantified the abundance of all the proteins in immunoprecipitates of 1,124 new recombinant antibodies for 152 chromatin-related human proteins by comparing normalized spectral abundance factors from the target antigen with those of all other proteins. We validated the performance of the standard operating procedure in blinded studies in five independent laboratories. Antibodies for which the target antigen or a member of its known protein complex was the most abundant protein were classified as 'IP gold standard'. This method generates quantitative outputs that can be stored and archived in public databases, and it represents a step toward a platform for community benchmarking of antibody quality.


Asunto(s)
Anticuerpos Monoclonales/química , Especificidad de Anticuerpos , Cromatina/química , Inmunoprecipitación/métodos , Proteómica/métodos , Clonación Molecular , Biología Computacional/métodos , Escherichia coli/metabolismo , Células HEK293 , Humanos , Fragmentos de Inmunoglobulinas/química , Inmunoglobulina G/química , Espectrometría de Masas/métodos , Biblioteca de Péptidos , Proteínas/química , Proteoma , Reproducibilidad de los Resultados
11.
BMC Struct Biol ; 14: 10, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24628801

RESUMEN

BACKGROUND: The ubiquitous non-receptor protein tyrosine phosphatase SHP2 (encoded by PTPN11) plays a key role in RAS/ERK signaling downstream of most, if not all growth factors, cytokines and integrins, although its major substrates remain controversial. Mutations in PTPN11 lead to several distinct human diseases. Germ-line PTPN11 mutations cause about 50% of Noonan Syndrome (NS), which is among the most common autosomal dominant disorders. LEOPARD Syndrome (LS) is an acronym for its major syndromic manifestations: multiple Lentigines, Electrocardiographic abnormalities, Ocular hypertelorism, Pulmonary stenosis, Abnormalities of genitalia, Retardation of growth, and sensorineural Deafness. Frequently, LS patients have hypertrophic cardiomyopathy, and they might also have an increased risk of neuroblastoma (NS) and acute myeloid leukemia (AML). Consistent with the distinct pathogenesis of NS and LS, different types of PTPN11 mutations cause these disorders. RESULTS: Although multiple studies have reported the biochemical and biological consequences of NS- and LS-associated PTPN11 mutations, their structural consequences have not been analyzed fully. Here we report the crystal structures of WT SHP2 and five NS/LS-associated SHP2 mutants. These findings enable direct structural comparisons of the local conformational changes caused by each mutation. CONCLUSIONS: Our structural analysis agrees with, and provides additional mechanistic insight into, the previously reported catalytic properties of these mutants. The results of our research provide new information regarding the structure-function relationship of this medically important target, and should serve as a solid foundation for structure-based drug discovery programs.


Asunto(s)
Síndrome LEOPARD/genética , Síndrome de Noonan/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Síndrome LEOPARD/patología , Modelos Moleculares , Mutación , Síndrome de Noonan/patología , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
12.
J Med Chem ; 67(5): 3467-3503, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38372781

RESUMEN

Controlling malaria requires new drugs against Plasmodium falciparum. The P. falciparum cGMP-dependent protein kinase (PfPKG) is a validated target whose inhibitors could block multiple steps of the parasite's life cycle. We defined the structure-activity relationship (SAR) of a pyrrole series for PfPKG inhibition. Key pharmacophores were modified to enable full exploration of chemical diversity and to gain knowledge about an ideal core scaffold. In vitro potency against recombinant PfPKG and human PKG were used to determine compound selectivity for the parasite enzyme. P. berghei sporozoites and P. falciparum asexual blood stages were used to assay multistage antiparasitic activity. Cellular specificity of compounds was evaluated using transgenic parasites expressing PfPKG carrying a substituted "gatekeeper" residue. The structure of PfPKG bound to an inhibitor was solved, and modeling using this structure together with computational tools was utilized to understand SAR and establish a rational strategy for subsequent lead optimization.


Asunto(s)
Antimaláricos , Malaria Falciparum , Animales , Humanos , Antimaláricos/farmacología , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum , Animales Modificados Genéticamente , Relación Estructura-Actividad
13.
J Neurosci ; 32(41): 14355-63, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23055506

RESUMEN

Although tricyclic antidepressants rapidly activate monoaminergic neurotransmission, these drugs must be administered chronically to alleviate symptoms of depression. This observation suggests that molecular mechanisms downstream of monoamine receptor activation, which include the induction of gene transcription, underlie chronic antidepressant-induced changes in behavior. Here we show that methyl-CpG-binding protein 2 (MeCP2) regulates behavioral responses to chronic antidepressant treatment. Imipramine administration induces phosphorylation of MeCP2 at Ser421 (pMeCP2) selectively in the nucleus accumbens and the lateral habenula, two brain regions important for depressive-like behaviors. To test the role of pMeCP2 in depressive-like behaviors, we used male mice that bear a germ-line mutation knocked into the X-linked Mecp2 locus that changes Ser421 to a nonphosphorylatable Ala residue (S421A). MeCP2 S421A knock-in (KI) mice showed increased immobility in forced-swim and tail-suspension tests compared with their wild-type (WT) littermates. However, immobility of both MeCP2 WT and KI mice in forced swim was reduced by acute administration of imipramine, demonstrating that loss of pMeCP2 does not impair acute pharmacological sensitivity to this drug. After chronic social defeat stress, chronic administration of imipramine significantly improved social interaction in the MeCP2 WT mice. In contrast, the MeCP2 KI mice did not respond to chronic imipramine administration. These data suggest novel roles for pMeCP2 in the sensitivity to stressful stimuli and demonstrate that pMeCP2 is required for the effects of chronic imipramine on depressive-like behaviors induced by chronic social defeat stress.


Asunto(s)
Antidepresivos/administración & dosificación , Depresión/metabolismo , Depresión/terapia , Proteína 2 de Unión a Metil-CpG/fisiología , Serina/metabolismo , Medio Social , Animales , Depresión/psicología , Técnicas de Sustitución del Gen , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación/genética , Serina/genética , Factores de Tiempo
14.
Biochim Biophys Acta Gen Subj ; 1867(4): 130319, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36764586

RESUMEN

Seven coronaviruses have infected humans (HCoVs) to-date. SARS-CoV-2 caused the current COVID-19 pandemic with the well-known high mortality and severe socioeconomic consequences. MERS-CoV and SARS-CoV caused epidemic of MERS and SARS, respectively, with severe respiratory symptoms and significant fatality. However, HCoV-229E, HCoV-NL63, HCoV-HKU1, and HCoV-OC43 cause respiratory illnesses with less severe symptoms in most cases. All coronaviruses use RNA capping to evade the immune systems of humans. Two viral methyltransferases, nsp14 and nsp16, play key roles in RNA capping and are considered valuable targets for development of anti-coronavirus therapeutics. But little is known about the kinetics of nsp10-nsp16 methyltransferase activities of most HCoVs, and reliable assays for screening are not available. Here, we report the expression, purification, and kinetic characterization of nsp10-nsp16 complexes from six HCoVs in parallel with previously characterized SARS-CoV-2. Probing the active sites of all seven by SS148 and WZ16, the two recently reported dual nsp14 / nsp10-nsp16 inhibitors, revealed pan-inhibition. Overall, our study show feasibility of developing broad-spectrum dual nsp14 / nsp10-nsp16-inhibitor therapeutics.


Asunto(s)
COVID-19 , Humanos , Metiltransferasas/química , Pandemias , ARN , SARS-CoV-2/genética
15.
Structure ; 31(9): 1121-1131.e6, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37390814

RESUMEN

The huntingtin (HTT) protein plays critical roles in numerous cellular pathways by functioning as a scaffold for its many interaction partners and HTT knock out is embryonic lethal. Interrogation of HTT function is complicated by the large size of this protein so we studied a suite of structure-rationalized subdomains to investigate the structure-function relationships within the HTT-HAP40 complex. Protein samples derived from the subdomain constructs were validated using biophysical methods and cryo-electron microscopy, revealing they are natively folded and can complex with validated binding partner, HAP40. Derivatized versions of these constructs enable protein-protein interaction assays in vitro, with biotin tags, and in cells, with luciferase two-hybrid assay-based tags, which we use in proof-of-principle analyses to further interrogate the HTT-HAP40 interaction. These open-source biochemical tools enable studies of fundamental HTT biochemistry and biology, will aid the discovery of macromolecular or small-molecule binding partners and help map interaction sites across this large protein.


Asunto(s)
Proteína Huntingtina , Proteínas Nucleares , Microscopía por Crioelectrón , Proteína Huntingtina/química , Proteínas Nucleares/química , Humanos
16.
J Med Chem ; 66(23): 16051-16061, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37996079

RESUMEN

WD40 repeat-containing protein 91 (WDR91) regulates early-to-late endosome conversion and plays vital roles in endosome fusion, recycling, and transport. WDR91 was recently identified as a potential host factor for viral infection. We employed DNA-encoded chemical library (DEL) selection against the WDR domain of WDR91, followed by machine learning to predict ligands from the synthetically accessible Enamine REAL database. Screening of predicted compounds identified a WDR91 selective compound 1, with a KD of 6 ± 2 µM by surface plasmon resonance. The co-crystal structure confirmed the binding of 1 to the WDR91 side pocket, in proximity to cysteine 487, which led to the discovery of covalent analogues 18 and 19. The covalent adduct formation for 18 and 19 was confirmed by intact mass liquid chromatography-mass spectrometry. The discovery of 1, 18, and 19, accompanying structure-activity relationship, and the co-crystal structures provide valuable insights for designing potent and selective chemical tools against WDR91 to evaluate its therapeutic potential.


Asunto(s)
ADN , Bibliotecas de Moléculas Pequeñas , ADN/química , Biblioteca de Genes , Ligandos , Aprendizaje Automático , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química
17.
Nutrients ; 14(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36235651

RESUMEN

Probiotic and omega-3 supplements have been shown to reduce inflammation, and dual supplementation may have synergistic health effects. We investigated if the novel combination of a multi-strain probiotic (containing B. lactis Bi-07, L. paracasei Lpc-37, L. acidophilus NCFM, and B. lactis Bl-04) alongside omega-3 supplements reduces low-grade inflammation as measured by high-sensitivity C-reactive protein (hs-CRP) in elderly participants in a proof-of-concept, randomized, placebo-controlled, parallel study (NCT04126330). In this case, 76 community-dwelling elderly participants (median: 71.0 years; IQR: 68.0-73.8) underwent an intervention with the dual supplement (n = 37) or placebo (n = 39) for eight weeks. In addition to hs-CRP, cytokine levels and intestinal permeability were also assessed at baseline and after the eight-week intervention. No significant difference was seen for hs-CRP between the dual supplement group and placebo. However, interestingly, supplementation did result in significant increases in the level of the anti-inflammatory marker IL-10. In addition, dual supplementation increased levels of valeric acid, further suggesting the potential of the supplements in reducing inflammation and conferring health benefits. Together, the results suggest that probiotic and omega-3 dual supplementation exerts modest effects on inflammation and may have potential use as a non-pharmacological treatment for low-grade inflammation in the elderly.


Asunto(s)
Ácidos Grasos Omega-3 , Probióticos , Anciano , Proteína C-Reactiva/metabolismo , Suplementos Dietéticos , Método Doble Ciego , Humanos , Inflamación/tratamiento farmacológico , Interleucina-10
18.
Cells ; 11(18)2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36139496

RESUMEN

Probiotics can alter brain function via the gut-brain axis. We investigated the effect of a probiotic mixture containing Bifidobacterium longum, Lactobacillus helveticus and Lactiplantibacillus plantarum. In a randomized, placebo-controlled, double-blinded crossover design, 22 healthy subjects (6 m/16 f; 24.2 ± 3.4 years) underwent four-week intervention periods with probiotics and placebo, separated by a four-week washout period. Voxel-based morphometry indicated that the probiotic intervention affected the gray matter volume of a cluster covering the left supramarginal gyrus and superior parietal lobule (p < 0.0001), two regions that were also among those with an altered resting state functional connectivity. Probiotic intervention resulted in significant (FDR < 0.05) functional connectivity changes between regions within the default mode, salience, frontoparietal as well as the language network and several regions located outside these networks. Psychological symptoms trended towards improvement after probiotic intervention, i.e., the total score of the Hospital Anxiety and Depression Scale (p = 0.056) and its depression sub-score (p = 0.093), as well as sleep patterns (p = 0.058). The probiotic intervention evoked distinct changes in brain morphology and resting state brain function alongside slight improvements of psycho(bio)logical markers of the gut-brain axis. The combination of those parameters may provide new insights into the modes of action by which gut microbiota can affect gut-brain communication and hence brain function.


Asunto(s)
Bifidobacterium longum , Lactobacillus helveticus , Probióticos , Encéfalo , Voluntarios Sanos , Humanos , Probióticos/uso terapéutico
19.
Front Nutr ; 9: 827182, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571902

RESUMEN

Background: Evidence from preclinical studies suggests that probiotics affect brain function via the microbiome-gut-brain axis, but evidence in humans remains limited. Objective: The present proof-of-concept study investigated if a probiotic product containing a mixture of Bifidobacterium longum R0175, Lactobacillus helveticus R0052 and Lactiplantibacillus plantarum R1012 (in total 3 × 109 CFU/day) affected functional brain responses in healthy subjects during an emotional attention task. Design: In this double-blinded, randomized, placebo-controlled crossover study (Clinicaltrials.gov, NCT03615651), 22 healthy subjects (24.2 ± 3.4 years, 6 males/16 females) were exposed to a probiotic intervention and a placebo for 4 weeks each, separated by a 4-week washout period. Subjects underwent functional magnetic resonance imaging while performing an emotional attention task after each intervention period. Differential brain activity and functional connectivity were assessed. Results: Altered brain responses were observed in brain regions implicated in emotional, cognitive and face processing. Increased activation in the orbitofrontal cortex, a region that receives extensive sensory input and in turn projects to regions implicated in emotional processing, was found after probiotic intervention compared to placebo using a cluster-based analysis of functionally defined areas. Significantly reduced task-related functional connectivity was observed after the probiotic intervention compared to placebo. Fecal microbiota composition was not majorly affected by probiotic intervention. Conclusion: The probiotic intervention resulted in subtly altered brain activity and functional connectivity in healthy subjects performing an emotional task without major effects on the fecal microbiota composition. This indicates that the probiotic effects occurred via microbe-host interactions on other levels. Further analysis of signaling molecules could give possible insights into the modes of action of the probiotic intervention on the gut-brain axis in general and brain function specifically. The presented findings further support the growing consensus that probiotic supplementation influences brain function and emotional regulation, even in healthy subjects. Future studies including patients with altered emotional processing, such as anxiety or depression symptoms are of great interest. Clinical Trial Registration: [http://clinicaltrials.gov/], identifier [NCT03615651].

20.
Nutrients ; 14(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35405944

RESUMEN

Probiotics are suggested to impact physiological and psychological stress responses by acting on the gut-brain axis. We investigated if a probiotic product containing Bifidobacterium longum R0175, Lactobacillus helveticus R0052 and Lactiplantibacillus plantarum R1012 affected stress processing in a double-blinded, randomised, placebo-controlled, crossover proof-of-concept study (NCT03615651). Twenty-two healthy subjects (24.2 ± 3.4 years, 6 men/16 women) underwent a probiotic and placebo intervention for 4 weeks each, separated by a 4-week washout period. Subjects were examined by functional magnetic resonance imaging while performing the Montreal Imaging Stress Task (MIST) as well as an autonomic nervous system function assessment during the Stroop task. Reduced activation in regions of the lateral orbital and ventral cingulate gyri was observed after probiotic intervention compared to placebo. Significantly increased functional connectivity was found between the upper limbic region and medioventral area. Interestingly, probiotic intervention seemed to predominantly affect the initial stress response. Salivary cortisol secretion during the task was not altered. Probiotic intervention did not affect cognitive performance and autonomic nervous system function during Stroop. The probiotic intervention was able to subtly alter brain activity and functional connectivity in regions known to regulate emotion and stress responses. These findings support the potential of probiotics as a non-pharmaceutical treatment modality for stress-related disorders.


Asunto(s)
Bifidobacterium longum , Lactobacillus helveticus , Probióticos , Encéfalo/diagnóstico por imagen , Método Doble Ciego , Femenino , Voluntarios Sanos , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA