RESUMEN
BACKGROUND: Inavolisib is a highly potent and selective inhibitor of the alpha isoform of the p110 catalytic subunit of the phosphatidylinositol 3-kinase complex (encoded by PIK3CA) that also promotes the degradation of mutated p110α. Inavolisib plus palbociclib-fulvestrant has shown synergistic activity in preclinical models and promising antitumor activity in early-phase trials. METHODS: In a phase 3, double-blind, randomized trial, we compared first-line inavolisib (at an oral dose of 9 mg once daily) plus palbociclib-fulvestrant (inavolisib group) with placebo plus palbociclib-fulvestrant (placebo group) in patients with PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor 2 (HER2)-negative locally advanced or metastatic breast cancer who had had relapse during or within 12 months after the completion of adjuvant endocrine therapy. The primary end point was progression-free survival as assessed by the investigator. RESULTS: A total of 161 patients were assigned to the inavolisib group and 164 to the placebo group; the median follow-up was 21.3 months and 21.5 months, respectively. The median progression-free survival was 15.0 months (95% confidence interval [CI], 11.3 to 20.5) in the inavolisib group and 7.3 months (95% CI, 5.6 to 9.3) in the placebo group (hazard ratio for disease progression or death, 0.43; 95% CI, 0.32 to 0.59; P<0.001). An objective response occurred in 58.4% of the patients in the inavolisib group and in 25.0% of those in the placebo group. The incidence of grade 3 or 4 neutropenia was 80.2% in the inavolisib group and 78.4% in the placebo group; grade 3 or 4 hyperglycemia, 5.6% and 0%, respectively; grade 3 or 4 stomatitis or mucosal inflammation, 5.6% and 0%; and grade 3 or 4 diarrhea, 3.7% and 0%. No grade 3 or 4 rash was observed. Discontinuation of any trial agent because of adverse events occurred in 6.8% of the patients in the inavolisib group and in 0.6% of those in the placebo group. CONCLUSIONS: In patients with PIK3CA-mutated, hormone receptor-positive, HER2-negative locally advanced or metastatic breast cancer, inavolisib plus palbociclib-fulvestrant led to significantly longer progression-free survival than placebo plus palbociclib-fulvestrant, with a greater incidence of toxic effects. The percentage of patients who discontinued any trial agent because of adverse events was low. (Funded by F. Hoffmann-La Roche; INAVO120 ClinicalTrials.gov number, NCT04191499.).
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de la Mama Masculina , Neoplasias de la Mama , Fosfatidilinositol 3-Quinasa Clase I , Inhibidores de las Quinasa Fosfoinosítidos-3 , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/mortalidad , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Método Doble Ciego , Estimación de Kaplan-Meier , Mutación , Piperazinas/uso terapéutico , Piperazinas/efectos adversos , Supervivencia sin Progresión , Piridinas/uso terapéutico , Piridinas/efectos adversos , Masculino , Neoplasias de la Mama Masculina/tratamiento farmacológico , Neoplasias de la Mama Masculina/genética , Neoplasias de la Mama Masculina/mortalidad , Neoplasias de la Mama Masculina/patología , Inhibidores de las Quinasa Fosfoinosítidos-3/administración & dosificación , Inhibidores de las Quinasa Fosfoinosítidos-3/efectos adversos , Imidazoles/administración & dosificación , Imidazoles/efectos adversos , Oxazoles/administración & dosificación , Oxazoles/efectos adversosRESUMEN
Numerous biological processes involve proteins capable of transiently assembling into subcellular compartments necessary for cellular functions. One process is the RNA polymerase II transcription cycle which involves initiation, elongation, co-transcriptional modification of nascent RNA, and termination. The essential yeast transcription termination factor Nab3 is required for termination of small non-coding RNAs and accumulates into a compact nuclear granule upon glucose removal. Nab3 nuclear granule accumulation varies in penetrance across yeast strains and a higher Nab3 granule accumulation phenotype is associated with petite strains, suggesting a possible ATP-dependent mechanism for granule disassembly. Here, we demonstrate the uncoupling of mitochondrial oxidative phosphorylation by drug treatment or deletions of nuclear-encoded ATP synthase subunit genes were sufficient to increase Nab3 granule accumulation and led to an inability to proliferate during prolonged glucose deprivation, which requires respiration. Additionally, by enriching for respiration competent cells from a petite-prone strain, we generated a low granule-accumulating strain from a relatively high one, providing another link between respiratory competency and Nab3 granules. Consistent with the resulting idea that ATP is involved in granule accumulation, the addition of extracellular ATP to semi-permeabilized cells was sufficient to reduce Nab3 granule accumulation. Deleting the SKY1 gene, which encodes a kinase that phosphorylates nuclear SR repeat-containing proteins and is involved in efficient stress granule disassembly, also resulted in increased granule accumulation. This observation implicates Sky1 in Nab3 granule biogenesis. Taken together, these findings suggest there is normally an equilibrium between termination factor granule assembly and disassembly mediated by ATP-requiring nuclear machinery.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Nucleares/genética , Glucosa/genética , Glucosa/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Proteínas Serina-Treonina QuinasasRESUMEN
Reorganization of cellular proteins into subcellular compartments, such as the concentration of RNA-binding proteins into cytoplasmic stress granules and P-bodies, is a well-recognized, widely studied physiological process currently under intense investigation. One example of this is the induction of the yeast Nab3 transcription termination factor to rearrange from its pan-nucleoplasmic distribution to a granule at the nuclear periphery in response to nutrient limitation. Recent work in many cell types has shown that protein condensation in the nucleus is functionally important for transcription initiation, RNA processing, and termination. However, little is known about how subnuclear compartments form. Here, we have quantitatively analyzed this dynamic process in living yeast using a high-throughput computational tool and fluorescence microscopy. This analysis revealed that Nab3 granule accumulation varies in penetrance across yeast strains. A concentrated single granule is formed from at least a quarter of the nuclear Nab3 drawn from the rest of the nucleus. Levels of granule accumulation were inversely correlated with a growth defect in the absence of glucose. Importantly, the basis for some of the variation in penetrance was attributable to a defect in mitochondrial function. This publicly available computational tool provides a rigorous, reproducible, and unbiased examination of Nab3 granule accumulation that should be widely applicable to a variety of fluorescent images. Thousands of live cells can be readily examined enabling rigorous statistical verification of significance. With it, we describe a new feature of inducible subnuclear compartment formation for RNA-binding transcription factors and an important determinant of granule biogenesis.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Proteínas Nucleares/genética , Penetrancia , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
BACKGROUND: Atezolizumab is an inhibitor of PD-L1, which can lead to enhanced anticancer T-cell activity. We aimed to evaluate the safety, pharmacokinetics, and activity of atezolizumab in children and young adults with refractory or relapsed solid tumours, with known or expected PD-L1 expression. METHODS: iMATRIX was a multicentre, open-label, phase 1-2 trial of patients (aged <30 years) with solid tumours or lymphomas recruited from 28 hospitals in ten countries (USA, France, Italy, UK, Spain, the Netherlands, Denmark, Israel, Switzerland, and Germany). Eligible patients younger than 18 years received 15 mg/kg atezolizumab (maximum 1200 mg); patients aged 18-29 years received the adult dose (1200 mg) until disease progression or loss of clinical benefit. Co-primary endpoints were safety (assessed by incidence of adverse events) and pharmacokinetics (assessed by serum atezolizumab concentrations). Secondary endpoints included the proportion of patients achieving an objective response. This trial is registered with ClinicalTrials.gov, number NCT02541604. FINDINGS: Between Nov 5, 2015, and April 2, 2018, we screened 115 patients, 25 of whom did not meet the inclusion criteria. 90 patients, with a median age of 14 years (IQR 10-17), were enrolled. At the data cutoff (April 2, 2018), two patients remained on study treatment. 87 (97%) of 90 patients received at least one dose of atezolizumab at 15 mg/kg or 1200 mg and were evaluable for safety. Three patients were not treated owing to either poor clinical condition or withdrawal of consent. In the safety-evaluable population (n=87), the most common adverse events were pyrexia (36 [41%] patients) and fatigue (31 [36%]). The most common grade 3-4 adverse event was anaemia (19 [22%] patients). The most commonly reported serious adverse events were in the categories of infections and infestations; pyrexia was the only serious adverse event reported in more than two patients. 57 (66%) patients had at least one treatment-related adverse event (grade 1-4); fatigue was the most common treatment-related adverse event (17 patients [20%]). There were no fatal adverse events. Mean serum concentrations of atezolizumab were overlapping and comparable between children receiving 15 mg/kg and young adults receiving 1200 mg of atezolizumab every 3 weeks. Serum concentrations of atezolizumab were above the target exposure level in all patients. At 6 months, four patients (5%) achieved an objective response (all partial responses). INTERPRETATION: Although response to atezolizumab was restricted, atezolizumab was well tolerated with generally comparable exposure across populations. Our findings might help to define future development strategies for immune checkpoint inhibitors either by focusing research to specific disease subpopulations that exhibit greater benefit from immune checkpoint inhibitors, or by providing the means to identify therapeutic combination partners that augment T-cell infiltration and proliferation in so-called immune cold tumour microenvironments. FUNDING: F Hoffmann-La Roche.
Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , Enfermedad de Hodgkin/tratamiento farmacológico , Linfoma no Hodgkin/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Adolescente , Adulto , Niño , Preescolar , Femenino , Estudios de Seguimiento , Enfermedad de Hodgkin/patología , Humanos , Linfoma no Hodgkin/patología , Masculino , Dosis Máxima Tolerada , Neoplasias/patología , Pronóstico , Distribución Tisular , Adulto JovenRESUMEN
During January 1, 2020-May 18, 2020, approximately 1.3 million cases of coronavirus disease 2019 (COVID-19) and 83,000 COVID-19-associated deaths were reported in the United States (1). Understanding the demographic and clinical characteristics of decedents could inform medical and public health interventions focused on preventing COVID-19-associated mortality. This report describes decedents with laboratory-confirmed infection with SARS-CoV-2, the virus that causes COVID-19, using data from 1) the standardized CDC case-report form (case-based surveillance) (https://www.cdc.gov/coronavirus/2019-ncov/php/reporting-pui.html) and 2) supplementary data (supplemental surveillance), such as underlying medical conditions and location of death, obtained through collaboration between CDC and 16 public health jurisdictions (15 states and New York City).
Asunto(s)
Infecciones por Coronavirus/mortalidad , Disparidades en el Estado de Salud , Neumonía Viral/mortalidad , Vigilancia en Salud Pública , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19 , Enfermedad Crónica , Infecciones por Coronavirus/etnología , Etnicidad/estadística & datos numéricos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/etnología , Grupos Raciales/estadística & datos numéricos , Factores de Riesgo , Estados Unidos/epidemiología , Adulto JovenRESUMEN
BACKGROUND: Triple negative breast cancer (TNBC) is aggressive with limited treatment options upon recurrence. Molecular discordance between primary and metastatic TNBC has been observed, but the degree of biological heterogeneity has not been fully explored. Furthermore, genomic evolution through treatment is poorly understood. In this study, we aim to characterize the genomic changes between paired primary and metastatic TNBCs through transcriptomic and genomic profiling, and to identify genomic alterations which may contribute to chemotherapy resistance. METHODS: Genomic alterations and mRNA expression of 10 paired primary and metastatic TNBCs were determined through targeted sequencing, microarray analysis, and RNA sequencing. Commonly mutated genes, as well as differentially expressed and co-expressed genes were identified. We further explored the clinical relevance of differentially expressed genes between primary and metastatic tumors to patient survival using large public datasets. RESULTS: Through gene expression profiling, we observed a shift in TNBC subtype classifications between primary and metastatic TNBCs. A panel of eight cancer driver genes (CCNE1, TPX2, ELF3, FANCL, JAK2, GSK3B, CEP76, and SYK) were differentially expressed in recurrent TNBCs, and were also overexpressed in TCGA and METABRIC. CCNE1 and TPX2 were co-overexpressed in TNBCs. DNA mutation profiling showed that multiple mutations occurred in genes comprising a number of potentially targetable pathways including PI3K/AKT/mTOR, RAS/MAPK, cell cycle, and growth factor receptor signaling, reaffirming the wide heterogeneity of mechanisms driving TNBC. CCNE1 amplification was associated with poor overall survival in patients with metastatic TNBC. CONCLUSIONS: CCNE1 amplification may confer resistance to chemotherapy and is associated with poor overall survival in TNBC.
Asunto(s)
Ciclina E/genética , Amplificación de Genes , Perfilación de la Expresión Génica/métodos , Proteínas Oncogénicas/genética , Neoplasias de la Mama Triple Negativas/genética , Adulto , Anciano , Ciclina E/metabolismo , Resistencia a Antineoplásicos/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Persona de Mediana Edad , Proteínas Oncogénicas/metabolismo , Pronóstico , Análisis de Supervivencia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Secuenciación del ExomaRESUMEN
ErbB3 harbors weak kinase activity, but strongly activates downstream phosphatidylinositol 3-kinase/Akt signaling through heterodimerization with and activation by other ErbB receptor tyrosine kinases. We report here that ErbB3 loss in the luminal mammary epithelium of mice impaired Akt and MAPK signaling and reduced luminal cell proliferation and survival. ERBB3 mRNA expression levels were highest in luminal mammary populations and lowest in basal cell/stem cell populations. ErbB3 loss in mammary epithelial cells shifted gene expression patterns toward a mammary basal cell/stem cell signature. ErbB3 depletion-induced gene expression changes were rescued upon activation of Akt and MAPK signaling. Interestingly, proliferation and expansion of the mammary basal epithelium (BE) occurred upon ErbB3 targeting in the luminal epithelium, but not upon its targeting in the BE. Multiple cytokines, including interleukin 6, were induced upon ErbB3 depletion in luminal epithelium cells, which increased growth of BE cells. Taken together, these results suggest that ErbB3 regulates the balance of differentiated breast epithelial cell types by regulating their growth and survival through autocrine- and paracrine-signaling mechanisms.
Asunto(s)
Glándulas Mamarias Animales/enzimología , Glándulas Mamarias Animales/crecimiento & desarrollo , Receptor ErbB-3/metabolismo , Animales , Biomarcadores/metabolismo , Línea Celular Transformada , Proliferación Celular , Supervivencia Celular , Células Epiteliales/citología , Células Epiteliales/enzimología , Células Epiteliales/metabolismo , Epitelio/enzimología , Epitelio/crecimiento & desarrollo , Femenino , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas , Glándulas Mamarias Animales/citología , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fenotipo , Fosfatidilinositol 3-Quinasas/metabolismo , FosforilaciónRESUMEN
PURPOSE: To investigate the safety, tolerability, pharmacokinetics (PK), and preliminary antitumor activity of inavolisib, a potent and selective small-molecule inhibitor of p110α that promotes the degradation of mutated p110α, in combination with palbociclib and endocrine therapy (ET), in a phase I/Ib study in patients with PIK3CA-mutated, hormone receptor-positive/human epidermal growth factor receptor 2-negative locally advanced/metastatic breast cancer (ClinicalTrials.gov identifier: NCT03006172). METHODS: Women ≥18 years of age received inavolisib, palbociclib, and letrozole (Inavo + Palbo + Letro arm) or fulvestrant (Inavo + Palbo + Fulv arm) until unacceptable toxicity or disease progression. The primary objective was to evaluate safety or tolerability. RESULTS: Fifty-three patients were included, 33 in the Inavo + Palbo + Letro arm and 20 in the Inavo + Palbo + Fulv arm. Median duration of inavolisib treatment was 15.7 and 20.8 months (cutoff: March 27, 2023), respectively. Treatment-related adverse events (TRAEs) occurred in all patients; the most frequent were stomatitis, hyperglycemia, and diarrhea; grade ≥3 any TRAE rates were 87.9% and 85.0%; 6.1% and 10.0% discontinued any treatment due to TRAEs in the Inavo + Palbo + Letro and Inavo + Palbo + Fulv arms, respectively. No PK drug-drug interactions (DDIs) were observed among the study treatments when administered. Confirmed objective response rates were 52.0% and 40.0% in patients with measurable disease, and median progression-free survival was 23.3 and 35.0 months in the Inavo + Palbo + Letro and Inavo + Palbo + Fulv arms, respectively. Available paired pre- and on-treatment tumor tissue and circulating tumor DNA analyses confirmed the effects of study treatment on pharmacodynamic and pathophysiologic biomarkers of response. CONCLUSION: Inavolisib plus palbociclib and ET demonstrated a manageable safety profile, lack of DDIs, and promising preliminary antitumor activity.
RESUMEN
Gene fusions involving the catalytic domain of tyrosine kinases (TKs) are found in a variety of hematological and solid tumor malignancies. Clinically, TK fusions have emerged as prime targets for therapy with small molecule kinase inhibitors. Unfortunately, identification of TK fusions has been hampered by experimental limitations. Here, we developed version 2.0 of a genomically based systematic kinase fusion screen and used it to detect a novel imatinib-sensitive C6orf204-PDGFRB fusion in a patient with precursor T lymphoblastic lymphoma (T-ALL) and an associated myeloproliferative neoplasm with eosinophilia. These data validate the ability of this targeted capture-sequencing approach to detect TK fusion events in small amounts of DNA extracted directly from patient samples.
Asunto(s)
Trastornos Mieloproliferativos/genética , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Tirosina Quinasas/genética , Translocación Genética , Adulto , Algoritmos , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular Tumoral , Biología Computacional , Proteínas del Citoesqueleto , Orden Génico , Células HEK293 , Humanos , Células K562 , Cariotipificación , Masculino , Datos de Secuencia Molecular , Trastornos Mieloproliferativos/complicaciones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/complicaciones , Alineación de Secuencia , Análisis de Secuencia de ADNRESUMEN
Objective: The study assessed perceived health, health behaviors and conditions, and medical care utilization among students of different weight categories. Participants: Participants were college students (n = 37,583) from 58 institutions who responded to a national survey of student health behaviors. Methods: Chi-squared and mixed model analyses were completed. Results: Compared to healthy weight students, those with obesity were less likely to report excellent health and meet dietary and physical activity recommendations, and more likely to have obesity-related chronic conditions and to have attended a medical appointment in the prior 12 months. Students with obesity (84%) and overweight (70%) were more likely to be attempting weight loss compared to students of healthy weight (35%). Conclusions: Students with obesity have poorer health and health behaviors relative to students of healthy weight; students with overweight were in between. Adapting and implementing evidence-based weight management programs within colleges/universities may be beneficial for student health.
RESUMEN
PURPOSE: To comprehensively characterize tissue-specific and molecular subclasses of multiple PIK3CA (multi-PIK3CA) mutations and assess their impact on potential therapeutic outcomes. EXPERIMENTAL DESIGN: We profiled a pan-cancer cohort comprised of 352,392 samples across 66 tumor types using a targeted hybrid capture-based next-generation sequencing panel covering at least 324 cancer-related genes. Molecularly defined subgroups, allelic configuration, clonality, and mutational signatures were identified and tested for association with PI3K inhibitor therapeutic response. RESULTS: Multi-PIK3CA mutations are found in 11% of all PIK3CA-mutant tumors, including 9% of low tumor mutational burden (TMB) PIK3CA-mutant tumors, and are enriched in breast and gynecologic cancers. Multi-PIK3CA mutations are frequently clonal and in cis on the same allele and occur at characteristic positions across tumor types. These mutations tend to be mutually exclusive of mutations in other driver genes, and of genes in the PI3K pathway. Among PIK3CA-mutant tumors with a high TMB, 18% are multi-PIK3CA mutant and often harbor an apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC) mutational signature. Despite large differences in specific allele combinations comprising multi-PIK3CA mutant tumors, especially across cancer types, patients with different classes of multi-PIK3CA mutant estrogen receptor-positive, HER2-negative breast cancers respond similarly to PI3K inhibition. CONCLUSIONS: Our pan-tumor study provides biological insights into the genetic heterogeneity and tissue specificities of multi-PIK3CA mutations, with potential clinical utility to guide PI3K inhibition strategies.
Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasas , Humanos , Femenino , Fosfatidilinositol 3-Quinasas/genética , Heterogeneidad Genética , Neoplasias de la Mama/patología , Mutación , Fosfatidilinositol 3-Quinasa Clase I/genéticaRESUMEN
Taselisib is a potent ß-sparing phosphatidylinositol 3-kinase (PI3K) inhibitor that, with endocrine therapy, improves outcomes in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA)-mutated (PIK3CAmut) advanced breast cancer. To understand alterations associated with response to PI3K inhibition, we analysed circulating tumour DNA (ctDNA) from participants enrolled in the SANDPIPER trial. Participants were designated as either PIK3CAmut or PIK3CA no mutation was detected (NMD) per baseline ctDNA. The top mutated genes and tumour fraction estimates identified were analysed for their association with outcomes. In participants with PIK3CAmut ctDNA treated with taselisib + fulvestrant, tumour protein p53 (TP53; encoding p53) and fibroblast growth factor receptor 1 (FGFR1) alterations were associated with shorter progression-free survival (PFS) compared to participants with NMD in these genes. Conversely, participants with PIK3CAmut ctDNA harbouring a neurofibromin 1 (NF1) alteration or high baseline tumour fraction estimate experienced improved PFS upon treatment with taselisib + fulvestrant compared to placebo + fulvestrant. Broadly, alterations in oestrogen receptor (ER), PI3K and p53 pathway genes were associated with resistance to taselisib + fulvestrant in participants with PIK3CAmut ctDNA. Altogether, we demonstrated the impact of genomic (co-)alterations on outcomes with one of the largest clinico-genomic datasets of ER+, HER2-, PIK3CAmut breast cancer patients treated with a PI3K inhibitor.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Fulvestrant/farmacología , Fulvestrant/uso terapéutico , Receptores de Estrógenos/metabolismo , Proteína p53 Supresora de Tumor/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Genómica , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Receptor ErbB-2/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéuticoRESUMEN
BACKGROUND: Mutations in the p110α catalytic subunit of phosphatidylinositol 3-kinase (PI3K), encoded by the PIK3CA gene, cause dysregulation of the PI3K pathway in 35-40% of patients with HR+/HER2- breast cancer. Preclinically, cancer cells harboring double or multiple PIK3CA mutations (mut) elicit hyperactivation of the PI3K pathway leading to enhanced sensitivity to p110α inhibitors. METHODS: To understand the role of multiple PIK3CAmut in predicting response to p110α inhibition, we estimated the clonality of multiple PIK3CAmut in circulating tumor DNA (ctDNA) from patients with HR+/HER2- metastatic breast cancer enrolled to a prospectively registered clinical trial of fulvestrant ± taselisib, and analyzed the subgroups against co-altered genes, pathways, and outcomes. RESULTS: ctDNA samples with clonal multiple PIK3CAmut had fewer co-alterations in receptor tyrosine kinase (RTK) or non-PIK3CA PI3K pathway genes compared to samples with subclonal multiple PIK3CAmut indicating a strong reliance on the PI3K pathway. This was validated in an independent cohort of breast cancer tumor specimens that underwent comprehensive genomic profiling. Furthermore, patients whose ctDNA harbored clonal multiple PIK3CAmut exhibited a significantly higher response rate and longer progression-free survival vs subclonal multiple PIK3CAmut. CONCLUSIONS: Our study establishes clonal multiple PIK3CAmut as an important molecular determinant of response to p110α inhibition and provides rationale for further clinical investigation of p110α inhibitors alone or with rationally-selected therapies in breast cancer and potentially other solid tumor types.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Fulvestrant/uso terapéutico , Fosfatidilinositol 3-Quinasas/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Mutación , Fosfatidilinositol 3-Quinasa Clase I/genéticaRESUMEN
We report herein an exploratory biomarker analysis of refractory tumors collected from pediatric patients before atezolizumab therapy (iMATRIX-atezolizumab, NCT02541604 ). Elevated levels of CD8+ T cells and PD-L1 were associated with progression-free survival and a diverse baseline infiltrating T-cell receptor repertoire was prognostic. Differential gene expression analysis revealed elevated expression of CALCA (preprocalcitonin) and CCDC183 (highly expressed in testes) in patients who experienced clinical activity, suggesting that tumor neoantigens from these genes may contribute to immune response. In patients who experienced partial response or stable disease, elevated Igα2 expression correlated with T- and B-cell infiltration, suggesting that tertiary lymphoid structures existed in these patients' tumors. Consensus gene co-expression network analysis identified core cellular pathways that may play a role in antitumor immunity. Our study uncovers features associated with response to immune-checkpoint inhibition in pediatric patients with cancer and provides biological and translational insights to guide prospective biomarker profiling in future clinical trials.
Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Niño , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Anticuerpos Monoclonales Humanizados/efectos adversos , BiomarcadoresRESUMEN
Tyrosine kinase (TK) fusions are attractive drug targets in cancers. However, rapid identification of these lesions has been hampered by experimental limitations. Our in silico analysis of known cancer-derived TK fusions revealed that most breakpoints occur within a defined region upstream of a conserved GXGXXG kinase motif. We therefore designed a novel DNA-based targeted sequencing approach to screen systematically for fusions within the 90 human TKs; it should detect 92% of known TK fusions. We deliberately paired 'in-solution' DNA capture with 454 sequencing to minimize starting material requirements, take advantage of long sequence reads, and facilitate mapping of fusions. To validate this platform, we analyzed genomic DNA from thyroid cancer cells (TPC-1) and leukemia cells (KG-1) with fusions known only at the mRNA level. We readily identified for the first time the genomic fusion sequences of CCDC6-RET in TPC-1 cells and FGFR1OP2-FGFR1 in KG-1 cells. These data demonstrate the feasibility of this approach to identify TK fusions across multiple human cancers in a high-throughput, unbiased manner. This method is distinct from other similar efforts, because it focuses specifically on targets with therapeutic potential, uses only 1.5 µg of DNA, and circumvents the need for complex computational sequence analysis.
Asunto(s)
Proteínas Mutantes Quiméricas/genética , Proteínas de Neoplasias/genética , Proteínas Tirosina Quinasas/genética , Análisis de Secuencia de ADN/métodos , Secuencias de Aminoácidos , Línea Celular Tumoral , Puntos de Rotura del Cromosoma , Mapeo Cromosómico , Secuencia Conservada , Proteínas del Citoesqueleto/genética , Humanos , Proteínas Proto-Oncogénicas c-ret/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Análisis de Secuencia de Proteína , Transducción de Señal/genéticaRESUMEN
PURPOSE: Understanding the differences in biomarker prevalence that may exist among diverse populations is invaluable to accurately forecast biomarker-driven clinical trial enrollment metrics and to advance inclusive research and health equity. This study evaluated the frequency and types of PIK3CA mutations (PIK3CAmut) detected in predicted genetic ancestry subgroups across breast cancer (BC) subtypes. METHODS: Analyses were conducted using real-world genomic data from adult patients with BC treated in an academic or community setting in the United States and whose tumor tissue was submitted for comprehensive genomic profiling. RESULTS: Of 36,151 patients with BC (median age, 58 years; 99% female), the breakdown by predicted genetic ancestry was 75% European, 14% African, 6% Central/South American, 3% East Asian, and 1% South Asian. We demonstrated that patients of African ancestry are less likely to have tumors that harbor PIK3CAmut compared with patients of European ancestry with estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+/HER2-) BC (37% [949/2,593] v 44% [7,706/17,637]; q = 4.39E-11) and triple-negative breast cancer (8% [179/2,199] v 14% [991/7,072]; q = 6.07E-13). Moreover, we found that PIK3CAmut were predominantly composed of hotspot mutations, of which mutations at H1047 were the most prevalent across BC subtypes (35%-41% ER+/HER2- BC; 43%-61% HER2+ BC; 40%-59% triple-negative breast cancer). CONCLUSION: This analysis established that tumor PIK3CAmut prevalence can differ among predicted genetic ancestries across BC subtypes on the basis of the largest comprehensive genomic profiling data set of patients with cancer treated in the United States. This study highlights the need for equitable representation in research studies, which is imperative to ensuring better health outcomes for all.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Adulto , Humanos , Femenino , Persona de Mediana Edad , Masculino , Prevalencia , Neoplasias de la Mama Triple Negativas/epidemiología , Mutación , Población Negra , Fosfatidilinositol 3-Quinasa Clase I/genéticaRESUMEN
Ice shelves cover ~1.6 million km2 of the Antarctic continental shelf and are sensitive indicators of climate change. With ice-shelf retreat, aphotic marine environments transform into new open-water spaces of photo-induced primary production and associated organic matter export to the benthos. Predicting how Antarctic seafloor assemblages may develop following ice-shelf loss requires knowledge of assemblages bordering the ice-shelf margins, which are relatively undocumented. This study investigated seafloor assemblages, by taxa and functional groups, in a coastal polynya adjacent to the Larsen C Ice Shelf front, western Weddell Sea. The study area is rarely accessed, at the frontline of climate change, and located within a CCAMLR-proposed international marine protected area. Four sites, ~1 to 16 km from the ice-shelf front, were explored for megabenthic assemblages, and potential environmental drivers of assemblage structures were assessed. Faunal density increased with distance from the ice shelf, with epifaunal deposit-feeders a surrogate for overall density trends. Faunal richness did not exhibit a significant pattern with distance from the ice shelf and was most variable at sites closest to the ice-shelf front. Faunal assemblages significantly differed in composition among sites, and those nearest to the ice shelf were the most dissimilar; however, ice-shelf proximity did not emerge as a significant driver of assemblage structure. Overall, the study found a biologically-diverse and complex seafloor environment close to an ice-shelf front and provides ecological baselines for monitoring benthic ecosystem responses to environmental change, supporting marine management.
RESUMEN
BACKGROUND: The MAPK pathway is an emerging target across a number of adult and pediatric tumors. Targeting the downstream effector of MAPK, MEK1, is a proposed strategy to control the growth of MAPK-dependent tumors. OBJECTIVE: iMATRIX-cobi assessed the safety, pharmacokinetics, and anti-tumor activity of cobimetinib, a highly selective MEK inhibitor, in children and young adults with relapsed/refractory solid tumors. PATIENTS AND METHODS: This multicenter Phase I/II study enrolled patients aged 6 months to < 30 years with solid tumors with known/expected MAPK pathway involvement. Patients received cobimetinib tablet or suspension formulation on Days 1-21 of a 28-day cycle. Dose escalation followed a rolling 6 design. The primary endpoint was safety; secondary endpoints were pharmacokinetics and anti-tumor activity. RESULTS: Of 56 enrolled patients (median age 9 years [range 3-29]), 18 received cobimetinib tablets and 38 cobimetinib suspension. Most common diagnoses were low-grade glioma (LGG; n = 32, including n = 12 in the expansion cohort) and plexiform neurofibroma within neurofibromatosis type 1 (n = 12). Six patients (11 %) experienced dose-limiting toxicities (including five ocular toxicity events), which established a pediatric recommended Phase II dose (RP2D) of 0.8 mg/kg tablet and 1.0 mg/kg suspension. Most frequently reported treatment-related adverse events were gastrointestinal and skin disorders. Steady state mean exposure (Cmax, AUC0-24) of cobimetinib at the RP2D (1.0 mg/kg suspension) was ~ 50 % lower than in adults receiving the approved 60 mg/day dose. Overall response rate was 5.4 % (3/56; all partial responses in patients with LGG). CONCLUSIONS: The safety profile of cobimetinib in pediatrics was similar to that reported in adults. Clinical activity was observed in LGG patients with known/suspected MAPK pathway activation. Cobimetinib combination regimens may be required to improve response rates in this pediatric population. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT02639546, registered December 24, 2015.
Asunto(s)
Azetidinas , Neoplasias , Piperidinas , Adolescente , Adulto , Azetidinas/efectos adversos , Azetidinas/uso terapéutico , Niño , Preescolar , Inhibidores Enzimáticos/uso terapéutico , Glioma/tratamiento farmacológico , Humanos , Dosis Máxima Tolerada , Recurrencia Local de Neoplasia , Neoplasias/tratamiento farmacológico , Pediatría , Piperidinas/efectos adversos , Piperidinas/uso terapéutico , Comprimidos , Adulto JovenRESUMEN
The MYC oncogene is frequently amplified in triple-negative breast cancer (TNBC). Here, we show that MYC suppression induces immune-related hallmark gene set expression and tumor-infiltrating T cells in MYC-hyperactivated TNBCs. Mechanistically, MYC repressed stimulator of interferon genes (STING) expression via direct binding to the STING1 enhancer region, resulting in downregulation of the T-cell chemokines CCL5, CXCL10, and CXCL11. In primary and metastatic TNBC cohorts, tumors with high MYC expression or activity exhibited low STING expression. Using a CRISPR-mediated enhancer perturbation approach, we demonstrated that MYC-driven immune evasion is mediated by STING repression. STING repression induced resistance to PD-L1 blockade in mouse models of TNBC. Finally, a small-molecule inhibitor of MYC combined with PD-L1 blockade elicited a durable response in immune-cold TNBC with high MYC expression, suggesting a strategy to restore PD-L1 inhibitor sensitivity in MYC-overexpressing TNBC.
Asunto(s)
Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Neoplasias de la Mama Triple Negativas , Animales , Antígeno B7-H1 , Línea Celular Tumoral , Represión Epigenética , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Evasión Inmune , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
BACKGROUND: Entrectinib is a TRKA/B/C, ROS1, ALK tyrosine kinase inhibitor approved for the treatment of adults and children aged ≥12 years with NTRK fusion-positive solid tumors and adults with ROS1 fusion-positive non-small-cell lung cancer. We report an analysis of the STARTRK-NG trial, investigating the recommended phase 2 dose (RP2D) and activity of entrectinib in pediatric patients with solid tumors including primary central nervous system tumors. METHODS: STARTRK-NG (NCT02650401) is a phase 1/2 trial. Phase 1, dose-escalation of oral, once-daily entrectinib, enrolled patients aged <22 years with solid tumors with/without target NTRK1/2/3, ROS1, or ALK fusions. Phase 2, basket trial at the RP2D, enrolled patients with intracranial or extracranial solid tumors harboring target fusions or neuroblastoma. Primary endpoints: phase 1, RP2D based on toxicity; phase 2, objective response rate (ORR) in patients harboring target fusions. Safety-evaluable patients: ≥1 dose of entrectinib; response-evaluable patients: measurable/evaluable baseline disease and ≥1 dose at RP2D. RESULTS: At data cutoff, 43 patients, median age of 7 years, were response-evaluable. In phase 1, 4 patients experienced dose-limiting toxicities. The most common treatment-related adverse event was weight gain (48.8%). Nine patients experienced bone fractures (20.9%). In patients with fusion-positive tumors, ORR was 57.7% (95% CI 36.9-76.7), median duration of response was not reached, and median (interquartile range) duration of treatment was 10.6 months (4.2-18.4). CONCLUSIONS: Entrectinib resulted in rapid and durable responses in pediatric patients with solid tumors harboring NTRK1/2/3 or ROS1 fusions.