Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 183, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796418

RESUMEN

BACKGROUND: Prebiotic fibers are non-digestible substrates that modulate the gut microbiome by promoting expansion of microbes having the genetic and physiological potential to utilize those molecules. Although several prebiotic substrates have been consistently shown to provide health benefits in human clinical trials, responder and non-responder phenotypes are often reported. These observations had led to interest in identifying, a priori, prebiotic responders and non-responders as a basis for personalized nutrition. In this study, we conducted in vitro fecal enrichments and applied shotgun metagenomics and machine learning tools to identify microbial gene signatures from adult subjects that could be used to predict prebiotic responders and non-responders. RESULTS: Using short chain fatty acids as a targeted response, we identified genetic features, consisting of carbohydrate active enzymes, transcription factors and sugar transporters, from metagenomic sequencing of in vitro fermentations for three prebiotic substrates: xylooligosacharides, fructooligosacharides, and inulin. A machine learning approach was then used to select substrate-specific gene signatures as predictive features. These features were found to be predictive for XOS responders with respect to SCFA production in an in vivo trial. CONCLUSIONS: Our results confirm the bifidogenic effect of commonly used prebiotic substrates along with inter-individual microbial responses towards these substrates. We successfully trained classifiers for the prediction of prebiotic responders towards XOS and inulin with robust accuracy (≥ AUC 0.9) and demonstrated its utility in a human feeding trial. Overall, the findings from this study highlight the practical implementation of pre-intervention targeted profiling of individual microbiomes to stratify responders and non-responders.


Asunto(s)
Ácidos Grasos Volátiles , Heces , Fermentación , Microbioma Gastrointestinal , Prebióticos , Prebióticos/análisis , Humanos , Heces/microbiología , Microbioma Gastrointestinal/genética , Adulto , Ácidos Grasos Volátiles/metabolismo , Familia de Multigenes , Aprendizaje Automático , Metagenómica/métodos , Biomarcadores/metabolismo , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Femenino , Masculino , Inulina/metabolismo , Adulto Joven , Metabolismo de los Hidratos de Carbono
2.
J Nutr ; 153(4): 1143-1149, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36822397

RESUMEN

BACKGROUND: Live dietary microbes have been hypothesized to contribute to human health but direct evidence is lacking. OBJECTIVES: This study aimed to determine whether the dietary consumption of live microbes is linked to improved health outcomes. METHODS: Data from the NHANES 2001-2018 were used to assess microbial intake and their adjusted associations with selected physiological parameters (e.g., blood pressure, anthropometric measures, and biomarkers) among adults aged 19 y and older. Regression models were constructed to assess the microbial intake with each physiological parameter and adjusted for demographics and other covariates. Microbial intake was assessed as both a continuous variable and a 3-level categorical variable. Fermented foods were assessed in a separate model. RESULTS: In continuous models, an additional 100-g intake of microbe-containing foods was associated with a lower systolic blood pressure (regression coefficient: -0.331; 95% CI: -0.447, -0.215 mm Hg), C-reactive protein (-0.013; 95% CI: -0.019, -0.008 mg/dL), plasma glucose -0.347; 95% CI: -0.570, -0.124 mg/dL), plasma insulin (-0.201; 95% CI: -0.304, -0.099 µU/mL), triglyceride (-1.389; 95% CI: -2.672, -0.106 mg/dL), waist circumference (-0.554; 95% CI: -0.679, -0.428 cm), and BMI -0.217; 95% CI: -0.273, -0.160 kg/m2) levels and a higher level of high density lipoprotein cholesterols (0.432; 95% CI: 0.289, 0.574 mg/dL). Patterns were broadly similar when microbial intake was assessed categorically and when fermented foods were assessed separately. CONCLUSIONS: To our knowledge, this study is the first to quantify, in a nationally representative data set of American adults and using stable sets of covariates in the regression models, the adjusted associations of dietary intakes of live microbes with a variety of outcomes, such as anthropometric measures, biomarkers, and blood pressure levels. Our findings suggest that foods with higher microbial concentrations are associated with modest health improvements across a range of outcomes.


Asunto(s)
Alimentos Fermentados , Adulto , Humanos , Estados Unidos , Encuestas Nutricionales , Índice de Masa Corporal , Biomarcadores , Evaluación de Resultado en la Atención de Salud
3.
Appl Environ Microbiol ; 88(20): e0129922, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36200766

RESUMEN

Xylans, a family of xylose-based polysaccharides, are dietary fibers resistant to digestion. They therefore reach the large intestine intact; there, they are utilized by members of the gut microbiota. They are initially broken down by primary degraders that utilize extracellular xylanases to cleave xylan into smaller oligomers. The resulting xylooligosaccharides (XOS) can either be further metabolized directly by primary degraders or cross-feed secondary consumers, including Bifidobacterium. While several Bifidobacterium species have metabolic systems for XOS, most grow poorly on longer-chain XOS and xylan substrates. In this study, we isolated strains of Bifidobacterium pseudocatenulatum and observed that some, including B. pseudocatenulatum ED02, displayed growth on XOS with a high degree of polymerization (DP) and straight-chain xylan, suggesting a primary degrader phenotype that is rare in Bifidobacterium. In silico analyses revealed that only the genomes of these xylan-fermenting (xylan+) strains contained an extracellular GH10 endo-ß-1.4 xylanase, a key enzyme for primary degradation of xylan. The presence of an extracellular xylanase was confirmed by the appearance of xylan hydrolysis products in cell-free supernatants. Extracellular xylanolytic activity was only detected in xylan+ strains, as indicated by the production of XOS fragments with a DP of 2 to 6, identified by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Additionally, in vitro fecal fermentations revealed that strains with a xylan+ phenotype can persist with xylan supplementation. These results indicate that xylan+ B. pseudocatenulatum strains may have a competitive advantage in the complex environment of the gastrointestinal tract, due to their ability to act as primary degraders of xylan through extracellular enzymatic degradation. IMPORTANCE The beneficial health effects of dietary fiber are now well established. Moreover, low fiber consumption is associated with increased risks of metabolic and systemic diseases. This so-called "fiber gap" also has a profound impact on the composition of the gut microbiome, leading to a disrupted or dysbiotic microbiota. Therefore, understanding the mechanisms by which keystone bacterial species in the gut utilize xylans and other dietary fibers may provide a basis for developing strategies to restore gut microbiome function. The results described here provide biochemical and genetic evidence for primary xylan utilization by human-derived Bifidobacterium pseudocatenulatum and show also that cooperative utilization of xylans occurs among other members of this species.


Asunto(s)
Bifidobacterium pseudocatenulatum , Xilanos , Humanos , Xilanos/metabolismo , Bifidobacterium pseudocatenulatum/metabolismo , Xilosa/metabolismo , Glucuronatos/metabolismo , Oligosacáridos/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Bifidobacterium/metabolismo , Hidrólisis , Fibras de la Dieta/metabolismo
4.
J Nutr ; 152(7): 1729-1736, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35583208

RESUMEN

BACKGROUND: Consuming live microbes in foods may benefit human health. Live microbe estimates have not previously been associated with individual foods in dietary databases. OBJECTIVES: We aimed to estimate intake of live microbes in US children (aged 2-18 y) and adults (≥19 y) (n = 74,466; 51.2% female). METHODS: Using cross-sectional data from the NHANES (2001-2018), experts assigned foods an estimated level of live microbes per gram [low (Lo), <104 CFU/g; medium (Med), 104-107 CFU/g; or high (Hi), >107 CFU/g]. Probiotic dietary supplements were also assessed. The mean intake of each live microbe category and the percentages of subjects who ate from each live microbe category were determined. Nutrients from foods with live microbes were also determined using the population ratio method. Because the Hi category comprised primarily fermented dairy foods, we also looked at aggregated data for Med or Hi (MedHi), which included an expanded range of live microbe-containing foods, including fruits and vegetables. RESULTS: Our analysis showed that 52%, 20%, and 59% of children/adolescents, and 61%, 26%, and 67% of adults, consumed Med, Hi, or MedHi foods, respectively. Per capita intake of Med, Hi, and MedHi foods was 69, 16, and 85 g/d for children/adolescents, and 106, 21, and 127 g/d for adults, respectively. The proportion of subjects who consumed live microbes and overall per capita intake increased significantly over the 9 cycles/18-y study period (0.9-3.1 g/d per cycle in children across categories and 1.4 g/d per cycle in adults for the Med category). CONCLUSIONS: This study indicated that children, adolescents, and adults in the United States steadily increased their consumption of foods with live microbes between the earliest (2001-2002) and latest (2017-2018) survey cycles. Additional research is needed to determine the relations between exposure to live microbes in foods and specific health outcomes or biomarkers.


Asunto(s)
Dieta , Verduras , Adolescente , Adulto , Niño , Estudios Transversales , Ingestión de Alimentos , Ingestión de Energía , Femenino , Humanos , Masculino , Encuestas Nutricionales , Estados Unidos
5.
BMC Microbiol ; 20(1): 337, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33167908

RESUMEN

BACKGROUND: Early infant feeding with intact or extensively hydrolyzed (EH) proteins or free amino acids (AA) may differentially affect intestinal microbiota composition and immune reactivity. This multicenter, double-blind, controlled, parallel-group, pilot study compared stool microbiota from Baseline (1-7 days of age) up to 60 days of age in healthy term infants who received mother's own milk (assigned to human milk [HM] reference group) (n = 25) or were randomized to receive one of two infant formulas: AA-based (AAF; n = 25) or EH cow's milk protein (EHF; n = 28). Stool samples were collected (Baseline, Day 30, Day 60) and 16S rRNA genes were sequenced. Alpha (Shannon, Simpson, Chao1) and beta diversity (Bray Curtis) were analyzed. Relative taxonomic enrichment and fold changes were analyzed (Wilcoxon, DESEq2). Short/branched chain fatty acids (S/BCFA) were quantified by gas chromatography. Mean S/BCFA and pH were analyzed (repeated measures ANOVA). RESULTS: At baseline, alpha diversity measures were similar among all groups; however, both study formula groups were significantly higher versus the HM group by Day 60. Significant group differences in beta diversity at Day 60 were also detected, and study formula groups were compositionally more similar compared to HM. The relative abundance of Bifidobacterium increased over time and was significantly enriched at Day 60 in the HM group. In contrast, a significant increase in members of Firmicutes for study formula groups were detected at Day 60 along with butyrate-producing species in the EHF group. Stool pH was significantly higher in the AAF group at Days 30 and 60. Butyrate increased significantly from Baseline to Day 60 in the EHF group and was significantly higher in study formula groups vs HM at Day 60. Propionate was also significantly higher for EHF and AAF at Day 30 and AAF at Day 60 vs HM. Total and individual BCFA were higher for AAF and EHF groups vs HM through Day 60. CONCLUSIONS: Distinct patterns of early neonatal microbiome, pH, and microbial metabolites were demonstrated for infants receiving mother's own milk compared to AA-based or extensively hydrolyzed protein formula. Providing different sources of dietary protein early in life may influence gut microbiota and metabolites. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02500563 . Registered July 28, 2015.


Asunto(s)
Ácidos Grasos Volátiles/análisis , Heces/química , Heces/microbiología , Microbioma Gastrointestinal , Aminoácidos/análisis , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Proteínas en la Dieta/análisis , Método Doble Ciego , Ácidos Grasos Volátiles/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Lactante , Fórmulas Infantiles/química , Fenómenos Fisiológicos Nutricionales del Lactante , Recién Nacido , Leche Humana/química , Proyectos Piloto , ARN Ribosómico 16S/genética
6.
J Nutr ; 150(12): 3061-3067, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33269394

RESUMEN

The collective findings from human microbiome research, randomized controlled trials on specific microbes (i.e., probiotics), and associative studies of fermented dairy consumption provide evidence for the beneficial effects of the regular consumption of safe live microbes. To test the hypothesis that the inclusion of safe, live microbes in the diet supports and improves health, we propose assessment of the types and evidentiary quality of the data available on microbe intake, including the assembly and evaluation of evidence available from dietary databases. Such an analysis would help to identify gaps in the evidence needed to test this hypothesis, which can then be used to formulate and direct initiatives focused on prospective and randomized controlled trials on live microbe consumption. Outcomes will establish whether or not the evidence exists, or can be generated, to support the establishment of dietary recommendations for live microbes.


Asunto(s)
Dieta , Suplementos Dietéticos , Microbiología de Alimentos , Microbiota , Ingesta Diaria Recomendada , Humanos , Política Nutricional , Necesidades Nutricionales , Prebióticos , Probióticos
7.
Compr Rev Food Sci Food Saf ; 19(1): 184-217, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-33319517

RESUMEN

Fermented foods and alcoholic beverages have long been an important part of the human diet in nearly every culture on every continent. These foods are often well-preserved and serve as stable and significant sources of proteins, vitamins, minerals, and other nutrients. Despite these common features, however, many differences exist with respect to substrates and products and the types of microbes involved in the manufacture of fermented foods and beverages produced globally. In this review, we describe these differences and consider the influence of geography and industrialization on fermented foods manufacture. Whereas fermented foods produced in Europe, North America, Australia, and New Zealand usually depend on defined starter cultures, those made in Asia and Africa often rely on spontaneous fermentation. Likewise, in developing countries, fermented foods are not often commercially produced on an industrial scale. Although many fermented products rely on autochthonous microbes present in the raw material, for other products, the introduction of starter culture technology has led to greater consistency, safety, and quality. The diversity and function of microbes present in a wide range of fermented foods can now be examined in detail using molecular and other omic approaches. The nutritional value of fermented foods is now well-appreciated, especially in resource-poor regions where yoghurt and other fermented foods can improve public health and provide opportunities for economic development. Manufacturers of fermented foods, whether small or large, should follow Good Manufacturing Practices and have sustainable development goals. Ultimately, preferences for fermented foods and beverages depend on dietary habits of consumers, as well as regional agricultural conditions and availability of resources.


Asunto(s)
Fermentación , Alimentos Fermentados/análisis , Manipulación de Alimentos/métodos , Microbiología de Alimentos , Bebidas Alcohólicas/análisis , Bebidas Alcohólicas/microbiología , Alimentos Fermentados/microbiología , Valor Nutritivo
8.
Appl Environ Microbiol ; 85(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31201276

RESUMEN

Research on the role of diet on gut and systemic health has led to considerable interest toward identifying novel therapeutic modulators of the gut microbiome, including the use of prebiotics and probiotics. However, various host responses have often been reported among many clinical trials. This is in part due to competitive exclusion as a result of the absence of ecological niches as well as host-mediated constraints via colonization resistance. In this research, we developed a novel in vitro enrichment (IVE) method for isolating autochthonous strains that can function as synergistic synbiotics and overcome these constraints. The method relied on stepwise in vitro fecal fermentations to enrich for and isolate Bifidobacterium strains that ferment the prebiotic xylooligosaccharide (XOS). We subsequently isolated Bifidobacterium longum subsp. longum CR15 and then tested its establishment in 20 unique fecal samples with or without XOS. The strain was established in up to 18 samples but only in the presence of XOS. Our findings revealed that the IVE method is suitable for isolating potential synergistic probiotic strains that possess the genetic and biochemical ability to ferment specific prebiotic substrates. The IVE method can be used as an initial high-throughput screen for probiotic selection and isolation prior to further characterization and in vivo tests.IMPORTANCE This study describes an in vitro enrichment method to formulate synergistic synbiotics that have potential for establishing autochthonous strains across multiple individuals. The rationale for this approach-that the chance of survival of a bacterial strain is improved by providing it with its required resources-is based on classic ecological theory. From these experiments, a human-derived strain, Bifidobacterium longum subsp. longum CR15, was identified as a xylooligosaccharide (XOS) fermenter in fecal environments and displayed synergistic effects in vitro The high rate of strain establishment observed in this study provides a basis for using synergistic synbiotics to overcome the responder/nonresponder phenomenon that occurs frequently in clinical trials with probiotic and prebiotic interventions. In addition, this approach can be applied in other protocols that require enrichment of specific bacterial populations prior to strain isolation.


Asunto(s)
Bifidobacterium/aislamiento & purificación , Bifidobacterium/metabolismo , Simbióticos/análisis , Adulto , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bifidobacterium/genética , Bifidobacterium/crecimiento & desarrollo , Heces/microbiología , Fermentación , Microbioma Gastrointestinal , Glucuronatos/metabolismo , Humanos , Oligosacáridos/metabolismo , Filogenia , Adulto Joven
9.
Appl Environ Microbiol ; 85(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31519661

RESUMEN

Strains of Lactobacillus reuteri are commonly used as probiotics due to their demonstrated therapeutic properties. Many strains of L. reuteri also utilize the prebiotic galactooligosaccharide (GOS), providing a basis for formulating synergistic synbiotics that could enhance growth or persistence of this organism in vivo In this study, in-frame deletion mutants were constructed to characterize the molecular basis of GOS utilization in L. reuteri ATCC PTA-6475. Results suggested that GOS transport relies on a permease encoded by lacS, while a second unidentified protein may function as a galactoside transporter. Two ß-galactosidases, encoded by lacA and lacLM, sequentially degrade GOS oligosaccharides and GOS disaccharides, respectively. Inactivation of lacL and lacM resulted in impaired growth in the presence of GOS and lactose. In vitro competition experiments between the wild-type and ΔlacS ΔlacM strains revealed that the GOS-utilizing genes conferred a selective advantage in media with GOS but not glucose. GOS also provided an advantage to the wild-type strain in experiments in gnotobiotic mice but only on a purified, no sucrose diet. Differences in cell numbers between GOS-fed mice and mice that did not receive GOS were small, suggesting that carbohydrates other than GOS were sufficient to support growth. On a complex diet, the ΔlacS ΔlacM strain was outcompeted by the wild-type strain in gnotobiotic mice, suggesting that lacL and lacM are involved in the utilization of alternative dietary carbohydrates. Indeed, the growth of the mutants was impaired in raffinose and stachyose, which are common in plants, demonstrating that α-galactosides may constitute alternate substrates of the GOS pathway.IMPORTANCE This study shows that lac genes in Lactobacillus reuteri encode hydrolases and transporters that are necessary for the metabolism of GOS, as well as α-galactoside substrates. Coculture experiments with the wild-type strain and a gos mutant clearly demonstrated that GOS utilization confers a growth advantage in medium containing GOS as the sole carbohydrate source. However, the wild-type strain also outcompeted the mutant in germfree mice, suggesting that GOS genes in L. reuteri also provide a basis for utilization of other carbohydrates, including α-galactosides, ordinarily present in the diets of humans and other animals. Collectively, our work provides information on the metabolism of L. reuteri in its natural niche in the gut and may provide a basis for the development of synbiotic strategies.


Asunto(s)
Galactosa/metabolismo , Tracto Gastrointestinal/microbiología , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/metabolismo , Oligosacáridos/metabolismo , Animales , Genoma Bacteriano , Vida Libre de Gérmenes , Operón Lac , Limosilactobacillus reuteri/crecimiento & desarrollo , Lactosa/metabolismo , Ratones , Mutación , Probióticos , Rafinosa/metabolismo , Simbióticos
10.
Microbiology (Reading) ; 164(2): 154-162, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29256851

RESUMEN

Many enteric pathogens, including Salmonella and enteropathogenic and enterohemorrhagic Escherichia coli, express adhesins that recognize and bind to carbohydrate moieties expressed on epithelial cells. An attractive strategy for inhibiting bacterial adherence employs molecules that mimic these epithelial binding sites. Prebiotic oligosaccharides are non-digestible, fermentable fibres capable of modulating the gut microbiota. Moreover, they may act as molecular decoys that competitively inhibit adherence of pathogens to host cells. In particular, galactooligosaccharides (GOS) and other prebiotic fibres have been shown to inhibit pathogen adherence to epithelial cells in vitro. In the present study, we determined the ability of prophylactic GOS administration to reduce enteric pathogen adherence both in vitro and in vivo as well as protect against intestinal inflammation. GOS supplementation significantly reduced the adherence of the epithelial-adherent murine bacterial pathogen Citrobacter rodentium in a dose-dependent manner to the surface of epithelial cells in vitro. A 1- to 2-log reduction in bacterial adherence was observed at the lowest and highest doses tested, respectively. However, mouse studies revealed that treatment with GOS neither reduced the adherence of C. rodentium to the distal colon nor decreased its dissemination to systemic organs. Despite the absence of adherence inhibition, colonic disease scores for GOS-treated, C. rodentium-infected mice were significantly lower than those of untreated C. rodentium-infected animals (P=0.028). Together, these data suggest that GOS has a direct protective effect in ameliorating disease severity following C. rodentium infection through an anti-adherence-independent mechanism.


Asunto(s)
Citrobacter rodentium/efectos de los fármacos , Colitis/prevención & control , Suplementos Dietéticos , Infecciones por Enterobacteriaceae/prevención & control , Galactanos/farmacología , Prebióticos/administración & dosificación , Animales , Adhesión Bacteriana/efectos de los fármacos , Línea Celular Tumoral , Colitis/microbiología , Colitis/patología , Colon/microbiología , Colon/patología , Resistencia a la Enfermedad , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/patología , Células Epiteliales/microbiología , Heces/microbiología , Femenino , Galactanos/administración & dosificación , Humanos , Ratones Endogámicos C57BL , Virulencia
11.
J Dairy Sci ; 100(3): 1629-1639, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28041732

RESUMEN

Cow milk is a common allergenic food, and cow milk-derived cheese retains an appreciable level of allergenicity. The specific and sensitive detection of milk protein residues in foods is needed to protect milk-allergic consumers from exposure to undeclared milk protein residues contained in foods made with milk or milk-derived ingredients or made on shared equipment or in shared facilities with milk or milk-derived ingredients. However, during cheese ripening, milk proteins are degraded by chymosin and milk-derived and bacterial proteases. Commercial allergen-detection methods are not validated for the detection of residues in fermented or hydrolyzed products. The objective of this research was to evaluate commercially available milk ELISA kits for their capability to detect milk protein residues in aged Cheddar cheese. Cheddar cheese was manufactured at a local dairy plant and was aged at 5°C for 24 mo, with samples removed at various time points throughout aging. Milk protein residues and protein profiles were measured using 4 commercial milk ELISA kits and sodium dodecyl sulfate-PAGE. The ELISA data revealed a 90% loss of milk protein residue signal between the youngest and oldest Cheddar cheese samples (0.5 and 24 mo, respectively). Sodium dodecyl sulfate-PAGE analysis showed protein degradation throughout aging, with the highest level of proteolysis observed at 24 mo. Results suggest that current commercial milk ELISA methods can detect milk protein residues in young Cheddar cheese, but the detection signal dramatically decreases during aging. The 4 evaluated ELISA kits were not capable of detecting trace levels of milk protein residues in aged cheese. Reliable detection of allergen residues in fermented food products is critical for upholding allergen-control programs, maintaining product safety, and protecting allergic consumers. Furthermore, this research suggests a novel use of ELISA kits to monitor protein degradation as an indication of cheese ripening.


Asunto(s)
Queso , Proteínas de la Leche , Animales , Bovinos , Ensayo de Inmunoadsorción Enzimática , Femenino , Manipulación de Alimentos , Leche/química , Proteolisis
12.
Environ Microbiol ; 18(7): 2172-84, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26530032

RESUMEN

Rodent-derived strains of Lactobacillus reuteri densely colonize the forestomach of mice and possess several genes whose predicted functions constitute adaptations towards an acidic environment. The objective of this study was to systematically determine which genes of L. reuteri 100-23 contribute to tolerance towards host gastric acid secretion. Genes predicted to be involved in acid resistance were inactivated, and their contribution to survival under acidic conditions was confirmed in model gastric juice. Fitness of five mutants that showed impaired in vitro acid resistance were then compared through competition experiments in ex-germ-free mice that were either treated with omeprazole, a proton-pump inhibitor that suppresses acid secretion in the stomach, or left untreated. This analysis revealed that the urease cluster was the predominant factor in mediating resistance to gastric acid production. Population levels of the mutant, which were substantially decreased in untreated mice, were almost completely restored through omeprazole, demonstrating that urease production in L. reuteri is mainly devoted to overcome gastric acid. The findings provide novel information on the mechanisms by which L. reuteri colonizes its gastric niche and demonstrate that in silico gene predictions and in vitro tests have limitations for predicting the ecological functions of colonization factors in bacterial symbionts.


Asunto(s)
Ácidos/metabolismo , Tracto Gastrointestinal/microbiología , Limosilactobacillus reuteri/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal/metabolismo , Limosilactobacillus reuteri/enzimología , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/crecimiento & desarrollo , Ratones , Ureasa/genética , Ureasa/metabolismo
13.
Curr Opin Gastroenterol ; 32(2): 110-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26825589

RESUMEN

PURPOSE OF REVIEW: A wide range of dietary carbohydrates, including prebiotic food ingredients, fermentable fibers, and milk oligosaccharides, are able to produce significant changes in the intestinal microbiota. These shifts in the microbial community are often characterized by increased levels of bifidobacteria and lactobacilli. More recent studies have revealed that species of Faecalibacterium, Akkermansia, and other less well studied members may also be enriched. We review the implications of these recent studies on future design of prebiotics and synbiotics to promote gastrointestinal health. RECENT FINDINGS: Investigations assessing the clinical outcomes associated with dietary modification of the gut microbiota have shown systemic as well as specific health benefits. Both prebiotic oligosaccharides comprised of a linear arrangement of simple sugars, as well as fiber-rich foods containing complex carbohydrates, have been used in these trials. However, individual variability and nonresponding study participants can make the outcome of dietary interventions less predictable. In contrast, synergistic synbiotics containing prebiotics that specifically stimulate a cognate probiotic provide additional options for personalized gut therapies. SUMMARY: This review describes recent research on how prebiotics and fermentable fibers can influence the gut microbiota and result in improvements to human health.


Asunto(s)
Enfermedades Gastrointestinales/dietoterapia , Tracto Gastrointestinal/inmunología , Prebióticos , Simbióticos , Bifidobacterium , Carbohidratos de la Dieta/administración & dosificación , Fermentación , Enfermedades Gastrointestinales/prevención & control , Tracto Gastrointestinal/microbiología , Promoción de la Salud , Humanos , Absorción Intestinal , Lactobacillus , Fenómenos Fisiológicos de la Nutrición , Oligosacáridos/administración & dosificación , Oligosacáridos/metabolismo , Prebióticos/administración & dosificación , Simbióticos/administración & dosificación
14.
Appl Environ Microbiol ; 81(7): 2455-65, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25616794

RESUMEN

One strategy for enhancing the establishment of probiotic bacteria in the human intestinal tract is via the parallel administration of a prebiotic, which is referred to as a synbiotic. Here we present a novel method that allows a rational selection of putative probiotic strains to be used in synbiotic applications: in vivo selection (IVS). This method consists of isolating candidate probiotic strains from fecal samples following enrichment with the respective prebiotic. To test the potential of IVS, we isolated bifidobacteria from human subjects who consumed increasing doses of galactooligosaccharides (GOS) for 9 weeks. A retrospective analysis of the fecal microbiota of one subject revealed an 8-fold enrichment in Bifidobacterium adolescentis strain IVS-1 during GOS administration. The functionality of GOS to support the establishment of IVS-1 in the gastrointestinal tract was then evaluated in rats administered the bacterial strain alone, the prebiotic alone, or the synbiotic combination. Strain-specific quantitative real-time PCR showed that the addition of GOS increased B. adolescentis IVS-1 abundance in the distal intestine by nearly 2 logs compared to rats receiving only the probiotic. Illumina 16S rRNA sequencing not only confirmed the increased establishment of IVS-1 in the intestine but also revealed that the strain was able to outcompete the resident Bifidobacterium population when provided with GOS. In conclusion, this study demonstrated that IVS can be used to successfully formulate a synergistic synbiotic that can substantially enhance the establishment and competitiveness of a putative probiotic strain in the gastrointestinal tract.


Asunto(s)
Bifidobacterium/efectos de los fármacos , Bifidobacterium/aislamiento & purificación , Selección Genética , Simbióticos , Animales , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Heces/microbiología , Humanos , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
15.
Curr Microbiol ; 69(4): 574-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24928110

RESUMEN

Cronobacter sakazakii is now recognized as an opportunistic pathogen and has been implicated in rare but severe cases of necrotizing enterocolitis, meningitis, and sepsis in neonates. The first step in bacterial pathogenesis requires that the organism adheres to host cells surfaces; therefore, agents that inhibit adherence might be useful for preventing infections. Lactoferrin, an iron binding protein found in milk, has been shown to inhibit bacterial adherence by direct interaction and disruption of bacterial surfaces. Therefore, the goal of this research was to assess the ability of two different types of bovine lactoferrin, alone and in combination with a 1:1 blend of galactooligosaccharides and polydextrose, to inhibit adherence of C. sakazakii to a HEp-2 human cell line. Results showed that the adherence of C. sakazakii was significantly reduced at a minimum lactoferrin concentration of 10 mg/ml. However, in combination with the oligosaccharide blend, no synergistic effect was observed in adherence inhibition. These results suggest that lactoferrin might interact with C. sakazakii and directly inhibit adhesion to tissue culture cells.


Asunto(s)
Adhesión Bacteriana/efectos de los fármacos , Cronobacter sakazakii/fisiología , Células Epiteliales/microbiología , Intestinos/microbiología , Lactoferrina/farmacología , Animales , Bovinos , Cronobacter sakazakii/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Infecciones por Enterobacteriaceae/microbiología , Células Hep G2 , Humanos , Intestinos/citología
16.
Compr Rev Food Sci Food Saf ; 13(2): 98-113, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33412650

RESUMEN

Many of the sauces used in frozen meals are oil-in-water emulsions that consist of fat droplets dispersed within an aqueous medium. This type of emulsion must remain physically and chemically stable throughout processing, freezing, storage, and defrosting conditions. Knowledge of the fundamental physicochemical mechanisms responsible for the stability of emulsion-based sauces is needed to design and fabricate high-quality sauces with the desired sensory attributes. This review provides an overview of the current understanding of the influence of freezing and thawing on the stability of oil-in-water emulsions. In particular, it focuses on the influence of product composition (such as emulsifiers, biopolymers, salts, and cryoprotectants), homogenization conditions, and freezing/thawing conditions on the stability of emulsions. The information contained in this review may be useful for optimizing the design of emulsion-based sauces for utilization in commercial food products.

17.
Front Nutr ; 11: 1465174, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39444571

RESUMEN

Introduction: Few studies have evaluated the effects of milk fat globule membrane (MFGM) on microbiota and immune markers in early infant nutrition. Methods: In this double-blind randomized study, infants (7-18 days of age) received either bovine milk-based infant formula (Control) or similar formula with an added source (5 g/L) of bovine MFGM (INV-MFGM) for 60 days. A reference group received mother's own human milk over the same period (HM). Oral and stool samples were collected (Baseline and Day 60) to evaluate microbiota, immune markers, and metabolites. Results: At Day 60, stool bacterial diversity and richness were higher in formula groups vs HM, as were Bifidobacterium bifidum and B. catenulatum abundance. Compared to HM, stool pH was higher in Control, while acetate, propionate, isovalerate, and total short- and branched-chain fatty acids were higher in INV-MFGM. Butyrate and lactate increased for INV-MFGM from baseline to Day 60. No group differences in oral microbiota or immune markers (α- and ß-defensin, calprotectin, or sIgA) were detected, although sIgA increased over time in all study groups. Added bovine MFGM in infant formula modulated stool microbiota and short- and branched-chain fatty acids compared to human milk; changes were modest relative to control formula. Discussion: Overall, distinct patterns of stool metabolites and microbiota development were observed based on early nutrition. Clinical trial registration: ClinicalTrials.gov, identifier NCT04059666.

18.
Artículo en Inglés | MEDLINE | ID: mdl-39358591

RESUMEN

Microbiomes provide key contributions to health and potentially important therapeutic targets. Conceived nearly 30 years ago, the prebiotic concept posits that targeted modulation of host microbial communities through the provision of selectively utilized growth substrates provides an effective approach to improving health. Although the basic tenets of this concept remain the same, it is timely to address certain challenges pertaining to prebiotics, including establishing that prebiotic-induced microbiota modulation causes the health outcome, determining which members within a complex microbial community directly utilize specific substrates in vivo and when those microbial effects sufficiently satisfy selectivity requirements, and clarification of the scientific principles on which the term 'prebiotic' is predicated to inspire proper use. In this Expert Recommendation, we provide a framework for the classification of compounds as prebiotics. We discuss ecological principles by which substrates modulate microbiomes and methodologies useful for characterizing such changes. We then propose statistical approaches that can be used to establish causal links between selective effects on the microbiome and health effects on the host, which can help address existing challenges. We use this information to provide the minimum criteria needed to classify compounds as prebiotics. Furthermore, communications to consumers and regulatory approaches to prebiotics worldwide are discussed.

19.
Annu Rev Food Sci Technol ; 14: 157-182, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36446139

RESUMEN

Inadequate dietary fiber consumption has become common across industrialized nations, accompanied by changes in gut microbial composition and a dramatic increase in chronic metabolic diseases. The human gut microbiome harbors genes that are required for the digestion of fiber, resulting in the production of end products that mediate gastrointestinal and systemic benefits to the host. Thus, the use of fiber interventions has attracted increasing interest as a strategy to modulate the gut microbiome and improve human health. However, considerable interindividual differences in gut microbial composition have resulted in variable responses toward fiber interventions. This variability has led to observed nonresponder individuals and highlights the need for personalized approaches to effectively redirect the gut ecosystem. In this review, we summarize strategies used to address the responder and nonresponder phenomenon in dietary fiber interventions and propose a targeted approach to identify predictive features based on knowledge of fiber metabolism and machine learning approaches.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiología , Ecosistema , Fibras de la Dieta , Tracto Gastrointestinal
20.
Front Nutr ; 10: 1190248, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37588049

RESUMEN

Introduction: Kombucha is a popular fermented tea that has attracted considerable attention due, in part, to its suggested health benefits. Previous results from animal models led us to hypothesize kombucha may reduce blood sugar levels in humans with diabetes. The objective of this pilot clinical study was to evaluate kombucha for its anti-hyperglycemic activities in adults with diabetes mellitus type II. Methods: The study was organized as a prospective randomized double-blinded crossover study at a single-center urban hospital system. Participants (n = 12) were instructed to consume either a kombucha product or a placebo control (each 240 mL) for 4 weeks. After an 8-week washout period, participants consumed the alternate product. Fasting blood glucose levels were self-determined at baseline and at 1 and 4 weeks during each treatment period. Secondary health outcomes, including overall health, insulin requirement, gut health, skin health, mental health, and vulvovaginal health were measured by questionnaire at the same time points. The kombucha microbiota was assessed by selective culturing and 16S rRNA gene (bacteria) and ITS (fungi) sequencing. Fermentation end products were assessed by HPLC. Statistical significance of changes in fasting blood glucose was determined using paired, two-tailed student's t-tests. Results: Kombucha lowered average fasting blood glucose levels at 4 weeks compared to baseline (164 vs. 116 mg/dL, p = 0.035), whereas the placebo did not (162 vs. 141 mg/dL, p = 0.078). The kombucha microbiota, as assessed by cultural enumeration, was mainly comprised of lactic acid bacteria, acetic acid bacteria, and yeast, with each group present at about 106 colony forming units (CFU)/mL. Likewise, 16S rRNA gene sequencing confirmed that lactic acid and acetic acid bacteria were the most abundant bacteria, and ITS sequencing showed Dekkera was the most abundant yeast. The primary fermentation end products were lactic and acetic acids, both less than 1%. Ethanol was present at 1.5%. Discussion: Although this pilot study was limited by a small sample size, kombucha was associated with reduced blood glucose levels in humans with diabetes. Larger follow-up studies are warranted. Clinical trial registration: ClinicalTrials.gov, identifier NCT04107207.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA