Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cerebellum ; 23(1): 56-66, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36633829

RESUMEN

Cerebellar brain inhibition (CBI), a neural connection between the cerebellum and primary motor cortex (M1), has been researched as a target pathway for neuromodulation to improve clinical outcomes in various neurological diseases. However, conflicting results of anodal cerebellar transcranial direct current stimulation (acb-tDCS) on M1 excitability indicate that additional investigation is required to examine its precise effect. This study aimed to gather evidence of the neuromodulatory effect of acb-tDCS on the M1 using functional near-infrared spectroscopy (fNIRS). Sixteen healthy participants were included in this cross-over study. Participants received real and sham acb-tDCS randomly, with a minimum 1-week washout period between them. The anode and cathode were placed on the right cerebellum and the right buccinator muscle, respectively. Stimulation lasted 20 min at an intensity of 2 mA, and fNIRS data were recorded for 42 min (including a 4-min baseline before stimulation and an 18-min post-stimulation duration) using eight channels attached bilaterally on the M1. acb-tDCS induced a significant decrease in oxyhemoglobin (HbO) concentration (inhibitory effect) in the left (contralateral) M1, whereas it induced a significant increase in HbO concentration (excitatory effect) in the right (ipsilateral) M1 compared to sham tDCS during (p < 0.05) and after stimulation (p < 0.01) in a group level analysis. At the individual level, variations in response to acb-tDCS were observed. Our findings demonstrate the neuromodulatory effects of acb-tDCS on the bilateral M1 in terms of neuronal hemodynamics.


Asunto(s)
Corteza Motora , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Espectroscopía Infrarroja Corta , Corteza Motora/fisiología , Estudios Cruzados , Cerebelo/fisiología , Electrodos , Potenciales Evocados Motores/fisiología
2.
J Neuroeng Rehabil ; 18(1): 176, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930380

RESUMEN

BACKGROUND: To apply transcranial electrical stimulation (tES) to the motor cortex, motor hotspots are generally identified using motor evoked potentials by transcranial magnetic stimulation (TMS). The objective of this study is to validate the feasibility of a novel electroencephalography (EEG)-based motor-hotspot-identification approach using a machine learning technique as a potential alternative to TMS. METHODS: EEG data were measured using 63 channels from thirty subjects as they performed a simple finger tapping task. Power spectral densities of the EEG data were extracted from six frequency bands (delta, theta, alpha, beta, gamma, and full) and were independently used to train and test an artificial neural network for motor hotspot identification. The 3D coordinate information of individual motor hotspots identified by TMS were quantitatively compared with those estimated by our EEG-based motor-hotspot-identification approach to assess its feasibility. RESULTS: The minimum mean error distance between the motor hotspot locations identified by TMS and our proposed motor-hotspot-identification approach was 0.22 ± 0.03 cm, demonstrating the proof-of-concept of our proposed EEG-based approach. A mean error distance of 1.32 ± 0.15 cm was measured when using only nine channels attached to the middle of the motor cortex, showing the possibility of practically using the proposed motor-hotspot-identification approach based on a relatively small number of EEG channels. CONCLUSION: We demonstrated the feasibility of our novel EEG-based motor-hotspot-identification method. It is expected that our approach can be used as an alternative to TMS for motor hotspot identification. In particular, its usability would significantly increase when using a recently developed portable tES device integrated with an EEG device.


Asunto(s)
Electroencefalografía , Estimulación Magnética Transcraneal , Electroencefalografía/métodos , Potenciales Evocados Motores/fisiología , Humanos , Redes Neurales de la Computación , Estimulación Magnética Transcraneal/métodos , Extremidad Superior
3.
Exp Brain Res ; 236(10): 2553-2562, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29934780

RESUMEN

In the present pilot study, we questioned how eating to satiety affects cognitive influences on the desire for food and corresponding neuronal activity in the obese female brain. During EEG recording, lean (n = 10) and obese women (n = 10) self-rated the ability to reappraise visually presented food. All women were measured twice, when hungry and after eating to satiety. After eating to satiety, reappraisal of food was easier than when being hungry. Comparing the EEG data of the sated to the hungry state, we found that only in obese women the frontal operculum was involved not only in the reappraisal of food but also in admitting the desire for the same food. The right frontal operculum in the obese female brain, assumed to primarily host gustatory processes, may be involved in opposing cognitive influences on the desire for food. These findings may help to find potential brain targets for non-invasive brain stimulation or neurofeedback studies that aim at modulating the desire for food.


Asunto(s)
Encéfalo/fisiología , Ingestión de Alimentos/fisiología , Neurorretroalimentación/fisiología , Adulto , Mapeo Encefálico , Femenino , Alimentos , Esperanza , Humanos , Hambre/fisiología , Masculino , Obesidad/fisiopatología , Proyectos Piloto , Factores Sexuales , Adulto Joven
4.
J Neuroeng Rehabil ; 15(1): 27, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29566710

RESUMEN

BACKGROUND: Functional near infrared spectroscopy (fNIRS) finds extended applications in a variety of neuroscience fields. We investigated the potential of fNIRS to monitor voluntary engagement of users during neurorehabilitation, especially during combinatory exercise (CE) that simultaneously uses both, passive and active exercises. Although the CE approach can enhance neurorehabilitation outcome, compared to the conventional passive or active exercise strategies, the active engagement of patients in active motor movements during CE is not known. METHODS: We determined hemodynamic responses induced by passive exercise and CE to evaluate the active involvement of users during CEs using fNIRS. In this preliminary study, hemodynamic responses of eight healthy subjects during three different tasks (passive exercise alone, passive exercise with motor imagery, and passive exercise with active motor execution) were recorded. On obtaining statistically significant differences, we classified the hemodynamic responses induced by passive exercise and CEs to determine the identification accuracy of the voluntary engagement of users using fNIRS. RESULTS: Stronger and broader activation around the sensorimotor cortex was observed during CEs, compared to that during passive exercise. Moreover, pattern classification results revealed more than 80% accuracy. CONCLUSIONS: Our preliminary study demonstrated that fNIRS can be potentially used to assess the engagement of users of the combinatory neurorehabilitation strategy.


Asunto(s)
Encéfalo/fisiología , Terapia por Ejercicio/métodos , Rehabilitación Neurológica/métodos , Espectroscopía Infrarroja Corta/métodos , Adulto , Encéfalo/irrigación sanguínea , Femenino , Voluntarios Sanos , Hemodinámica/fisiología , Humanos , Imágenes en Psicoterapia , Masculino
5.
Sensors (Basel) ; 18(6)2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29874804

RESUMEN

Electroencephalography (EEG) and near-infrared spectroscopy (NIRS) are non-invasive neuroimaging methods that record the electrical and metabolic activity of the brain, respectively. Hybrid EEG-NIRS brain-computer interfaces (hBCIs) that use complementary EEG and NIRS information to enhance BCI performance have recently emerged to overcome the limitations of existing unimodal BCIs, such as vulnerability to motion artifacts for EEG-BCI or low temporal resolution for NIRS-BCI. However, with respect to NIRS-BCI, in order to fully induce a task-related brain activation, a relatively long trial length (≥10 s) is selected owing to the inherent hemodynamic delay that lowers the information transfer rate (ITR; bits/min). To alleviate the ITR degradation, we propose a more practical hBCI operated by intuitive mental tasks, such as mental arithmetic (MA) and word chain (WC) tasks, performed within a short trial length (5 s). In addition, the suitability of the WC as a BCI task was assessed, which has so far rarely been used in the BCI field. In this experiment, EEG and NIRS data were simultaneously recorded while participants performed MA and WC tasks without preliminary training and remained relaxed (baseline; BL). Each task was performed for 5 s, which was a shorter time than previous hBCI studies. Subsequently, a classification was performed to discriminate MA-related or WC-related brain activations from BL-related activations. By using hBCI in the offline/pseudo-online analyses, average classification accuracies of 90.0 ± 7.1/85.5 ± 8.1% and 85.8 ± 8.6/79.5 ± 13.4% for MA vs. BL and WC vs. BL, respectively, were achieved. These were significantly higher than those of the unimodal EEG- or NIRS-BCI in most cases. Given the short trial length and improved classification accuracy, the average ITRs were improved by more than 96.6% for MA vs. BL and 87.1% for WC vs. BL, respectively, compared to those reported in previous studies. The suitability of implementing a more practical hBCI based on intuitive mental tasks without preliminary training and with a shorter trial length was validated when compared to previous studies.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Espectroscopía Infrarroja Corta , Adulto , Encéfalo/fisiología , Análisis Discriminante , Femenino , Humanos , Masculino , Estimulación Luminosa , Procesamiento de Señales Asistido por Computador , Adulto Joven
6.
Sensors (Basel) ; 18(9)2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158505

RESUMEN

Brain-computer interface (BCI) studies based on electroencephalography (EEG) measured around the ears (ear-EEGs) have mostly used exogenous paradigms involving brain activity evoked by external stimuli. The objective of this study is to investigate the feasibility of ear-EEGs for development of an endogenous BCI system that uses self-modulated brain activity. We performed preliminary and main experiments where EEGs were measured on the scalp and behind the ears to check the reliability of ear-EEGs as compared to scalp-EEGs. In the preliminary and main experiments, subjects performed eyes-open and eyes-closed tasks, and they performed mental arithmetic (MA) and light cognitive (LC) tasks, respectively. For data analysis, the brain area was divided into four regions of interest (ROIs) (i.e., frontal, central, occipital, and ear area). The preliminary experiment showed that the degree of alpha activity increase of the ear area with eyes closed is comparable to those of other ROIs (occipital > ear > central > frontal). In the main experiment, similar event-related (de)synchronization (ERD/ERS) patterns were observed between the four ROIs during MA and LC, and all ROIs showed the mean classification accuracies above 70% required for effective binary communication (MA vs. LC) (occipital = ear = central = frontal). From the results, we demonstrated that ear-EEG can be used to develop an endogenous BCI system based on cognitive tasks without external stimuli, which allows the usability of ear-EEGs to be extended.


Asunto(s)
Interfaces Cerebro-Computador , Encéfalo/fisiología , Oído , Electroencefalografía/métodos , Adulto , Estudios de Factibilidad , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Cuero Cabelludo , Adulto Joven
7.
Sleep ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629490

RESUMEN

Binaural beat (BB) has been investigated as a potential modality to enhance sleep quality. In this study, we introduce a new form of BB, referred to as dynamic BB (DBB), which incorporates dynamically changing carrier frequency differences between the left and right ears. Specifically, the carrier frequency of the right ear varied between 100 and 103 Hz over a period, while the left ear remained fixed at 100 Hz, yielding a frequency difference range of 0 to 3 Hz. The objective of this study was to examine the effect of DBB on sleep quality. Ten healthy participants were included in a cross-over design, where they experienced both DBB and a SHAM (absence of sound) condition across two consecutive nights, with polysomnography evaluation. DBB was administrated during pre-sleep initiation, sleep onset, and transition from rapid-eye-movement (REM) to non-REM stage. DBB significantly reduced sleep latency compared to the SHAM condition. Electrocardiogram analysis revealed that exposure to DBB led to diminished heart rate variability during the pre-sleep initiation and sleep onset periods, accompanied by a decrease in low frequency power of heart rate during the sleep onset period. DBB might be effective in improving the sleep quality, suggesting its possible application in insomnia treatments.

8.
J Affect Disord ; 338: 199-206, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37302509

RESUMEN

BACKGROUND: A machine-learning-based computer-aided diagnosis (CAD) system can complement the traditional diagnostic error for major depressive disorder (MDD) using trait-like neurophysiological biomarkers. Previous studies have shown that the CAD system has the potential to differentiate between female MDD patients and healthy controls. The aim of this study was to develop a practically useful resting-state electroencephalography (EEG)-based CAD system to assist in the diagnosis of drug-naïve female MDD patients by considering both the drug and gender effects. In addition, the feasibility of the practical use of the resting-state EEG-based CAD system was evaluated using a channel reduction approach. METHODS: Eyes-closed, resting-state EEG data were recorded from 49 drug-naïve female MDD patients and 49 sex-matched healthy controls. Six different EEG feature sets were extracted: power spectrum densities (PSDs), phase-locking values (PLVs), and network indices for both sensor- and source-level, and four different EEG channel montages (62, 30, 19, and 10-channels) were designed to investigate the channel reduction effects in terms of classification performance. RESULTS: The classification performances for each feature set were evaluated using a support vector machine with leave-one-out cross-validation. The optimum classification performance was achieved when using sensor-level PLVs (accuracy: 83.67 % and area under curve: 0.92). Moreover, the classification performance was maintained until the number of EEG channels was reduced to 19 (over 80 % accuracy). CONCLUSION: We demonstrated the promising potential of sensor-level PLVs as diagnostic features when developing a resting-state EEG-based CAD system for the diagnosis of drug-naïve female MDD patients and verified the feasibility of the practical use of the developed resting-state EEG-based CAD system using the channel reduction approach.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Femenino , Trastorno Depresivo Mayor/diagnóstico , Electroencefalografía , Aprendizaje Automático , Máquina de Vectores de Soporte , Diagnóstico por Computador
9.
Brain Connect ; 13(8): 487-497, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34269616

RESUMEN

Background: Impaired movement after stroke is closely associated with altered brain functions, and thus the investigation on neural substrates of patients with stroke can pave a way for not only understanding the underlying mechanisms of neuropathological traits, but also providing an innovative solution for stroke rehabilitation. The objective of this study was to precisely investigate altered brain functions in terms of power spectral and brain network analyses. Methods: Altered brain function was investigated by using electroencephalography (EEG) measured while 34 patients with chronic stroke performed movement tasks with the affected and unaffected hands. The relationships between functional brain network indices and Fugl-Meyer Assessment (FMA) scores were also investigated. Results: A stronger low-beta event-related desynchronization was found in the contralesional hemisphere for both affected and unaffected movement tasks compared with that of the ipsilesional hemisphere. More efficient whole-brain networks (increased strength and clustering coefficient, and prolonged path length) in the low-beta frequency band were revealed when moving the unaffected hand compared with when moving the affected hand. In addition, the brain network indices of the contralesional hemisphere indicated higher efficiency and cost-effectiveness than those of the ipsilesional hemisphere in both the alpha and low-beta frequency bands. Moreover, the alpha network indices (strength, clustering coefficient, path length, and small-worldness) were significantly correlated with the FMA scores. Conclusions: Efficient functional brain network indices are associated with better motor outcomes in patients with stroke and could be useful biomarkers to monitor stroke recovery during rehabilitation.

10.
Sci Rep ; 13(1): 16633, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789047

RESUMEN

Deep-learning approaches with data augmentation have been widely used when developing neuroimaging-based computer-aided diagnosis (CAD) systems. To prevent the inflated diagnostic performance caused by data leakage, a correct cross-validation (CV) method should be employed, but this has been still overlooked in recent deep-learning-based CAD studies. The goal of this study was to investigate the impact of correct and incorrect CV methods on the diagnostic performance of deep-learning-based CAD systems after data augmentation. To this end, resting-state electroencephalogram (EEG) data recorded from post-traumatic stress disorder patients and healthy controls were augmented using a cropping method with different window sizes, respectively. Four different CV approaches were used to estimate the diagnostic performance of the CAD system, i.e., subject-wise CV (sCV), overlapped sCV (oSCV), trial-wise CV (tCV), and overlapped tCV (otCV). Diagnostic performances were evaluated using two deep-learning models based on convolutional neural network. Data augmentation can increase the performance with all CVs, but inflated diagnostic performances were observed when using incorrect CVs (tCV and otCV) due to data leakage. Therefore, the correct CV (sCV and osCV) should be used to develop a deep-learning-based CAD system. We expect that our investigation can provide deep-insight for researchers who plan to develop neuroimaging-based CAD systems for psychiatric disorders using deep-learning algorithms with data augmentation.


Asunto(s)
Aprendizaje Profundo , Trastornos Mentales , Humanos , Redes Neurales de la Computación , Diagnóstico por Computador/métodos , Trastornos Mentales/diagnóstico por imagen , Computadores
11.
Biomed Eng Lett ; 13(3): 407-415, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37519870

RESUMEN

Recently, we introduced a current limiter-based novel transcranial direct-current stimulation (tDCS) device that does not generate significant tDCS-induced electrical artifacts, thereby facilitating simultaneous electroencephalography (EEG) measurement during tDCS application. In this study, we investigated the neuromodulatory effect of the tDCS device using resting-state EEG data measured during tDCS application in terms of EEG power spectral densities (PSD) and brain network indices (clustering coefficient and path length). Resting-state EEG data were recorded from 10 healthy subjects during both eyes-open (EO) and eyes-closed (EC) states for each of five different conditions (baseline, sham, post-sham, tDCS, and post-tDCS). In the tDCS condition, tDCS was applied for 12 min with a current intensity of 1.5 mA, whereas tDCS was applied only for the first 30 s in the sham condition. EEG PSD and brain network indices were computed for the alpha frequency band most closely associated with resting-state EEG. Both alpha PSD and network indices were found to significantly increase during and after tDCS application compared to those of the baseline condition in the EO state, but not in the EC state owing to the ceiling effect. Our results demonstrate the neuromodulatory effect of the tDCS device that does not generate significant tDCS-induced electrical artifacts, thereby allowing simultaneous measurement of electrical brain activity. We expect our novel tDCS device to be practically useful in exploring the impact of tDCS on neuromodulation more precisely using ongoing EEG data simultaneously measured during tDCS application.

12.
J Vis Exp ; (197)2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37522717

RESUMEN

Alteration of electroencephalography (EEG) signals during task-specific movement of the impaired limb has been reported as a potential biomarker for the severity of motor impairment and for the prediction of motor recovery in individuals with stroke. When implementing EEG experiments, detailed paradigms and well-organized experiment protocols are required to obtain robust and interpretable results. In this protocol, we illustrate a task-specific paradigm with upper limb movement and methods and techniques needed for the acquisition and analysis of EEG data. The paradigm consists of 1 min of rest followed by 10 trials comprising alternating 5 s and 3 s of resting and task (hand extension)-states, respectively, over 4 sessions. EEG signals were acquired using 32 Ag/AgCl scalp electrodes at a sampling rate of 1,000 Hz. Event-related spectral perturbation analysis associated with limb movement and functional network analyses at the global level in the low-beta (12-20 Hz) frequency band were performed. Representative results showed an alteration of the functional network of low-beta EEG frequency bands during movement of the impaired upper limb, and the altered functional network was associated with the degree of motor impairment in chronic stroke patients. The results demonstrate the feasibility of the experimental paradigm in EEG measurements during upper limb movement in individuals with stroke. Further research using this paradigm is needed to determine the potential value of EEG signals as biomarkers of motor impairment and recovery.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/diagnóstico , Extremidad Superior , Electroencefalografía/métodos , Mano , Rehabilitación de Accidente Cerebrovascular/métodos
13.
Front Psychiatry ; 13: 811766, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032254

RESUMEN

Impaired cognitive function related to intrusive memories of traumatic experiences is the most noticeable characteristic of post-traumatic stress disorder (PTSD); nevertheless, the brain mechanism involved in the cognitive processing is still elusive. To improve the understanding of the neuropathology in PTSD patients, we investigated functional cortical networks that are based on graph theory, by using electroencephalogram (EEG). EEG signals, elicited by an auditory oddball paradigm, were recorded from 53 PTSD patients and 39 healthy controls (HCs). Source signals in 68 regions of interests were estimated using EEG data for each subject using minimum-norm estimation. Then, using source signals of each subject, time-frequency analysis was conducted, and a functional connectivity matrix was constructed using the imaginary part of coherence, which was used to evaluate three global-level (strength, clustering coefficient, and path length) and two nodal-level (strength and clustering coefficients) network indices in four frequency bands (theta, alpha, low-beta, and high-beta). The relationships between the network indices and symptoms were evaluated using Pearson's correlation. Compared with HCs, PTSD patients showed significantly reduced spectral powers around P300 periods and significantly altered network indices (diminished strength and clustering coefficient, and prolonged path length) in theta frequency band. In addition, the nodal strengths and nodal clustering coefficients in theta band of PTSD patients were significantly reduced, compared with those of HCs, and the reduced nodal clustering coefficients in parieto-temporo-occipital regions had negative correlations with the symptom scores (Impact of Event Scale-Revises, Beck Depression Inventory, and Beck Anxiety Inventory). The characterization of this disrupted pattern improves the understanding of the neuropathophysiology underlying the impaired cognitive function in PTSD patients.

14.
Front Neuroinform ; 16: 811756, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571868

RESUMEN

Electroencephalography (EEG)-based diagnosis of psychiatric diseases using machine-learning approaches has made possible the objective diagnosis of various psychiatric diseases. The objective of this study was to improve the performance of a resting-state EEG-based computer-aided diagnosis (CAD) system to diagnose post-traumatic stress disorder (PTSD), by optimizing the frequency bands used to extract EEG features. We used eyes-closed resting-state EEG data recorded from 77 PTSD patients and 58 healthy controls (HC). Source-level power spectrum densities (PSDs) of the resting-state EEG data were extracted from 6 frequency bands (delta, theta, alpha, low-beta, high-beta, and gamma), and the PSD features of each frequency band and their combinations were independently used to discriminate PTSD and HC. The classification performance was evaluated using support vector machine with leave-one-out cross validation. The PSD features extracted from slower-frequency bands (delta and theta) showed significantly higher classification performance than those of relatively higher-frequency bands. The best classification performance was achieved when using delta PSD features (86.61%), which was significantly higher than that reported in a recent study by about 13%. The PSD features selected to obtain better classification performances could be explained from a neurophysiological point of view, demonstrating the promising potential to develop a clinically reliable EEG-based CAD system for PTSD diagnosis.

15.
Front Neurosci ; 16: 842635, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401092

RESUMEN

While previous studies have demonstrated the feasibility of using ear-electroencephalography (ear-EEG) for the development of brain-computer interfaces (BCIs), most of them have been performed using exogenous paradigms in offline environments. To verify the reliable feasibility of constructing ear-EEG-based BCIs, the feasibility of using ear-EEG should be further demonstrated using another BCI paradigm, namely the endogenous paradigm, in real-time online environments. Exogenous and endogenous BCIs are to use the EEG evoked by external stimuli and induced by self-modulation, respectively. In this study, we investigated whether an endogenous ear-EEG-based BCI with reasonable performance can be implemented in online environments that mimic real-world scenarios. To this end, we used three different mental tasks, i.e., mental arithmetic, word association, and mental singing, and performed BCI experiments with fourteen subjects on three different days to investigate not only the reliability of a real-time endogenous ear-EEG-based BCI, but also its test-retest reliability. The mean online classification accuracy was almost 70%, which was equivalent to a marginal accuracy for a practical two-class BCI (70%), demonstrating the feasibility of using ear-EEG for the development of real-time endogenous BCIs, but further studies should follow to improve its performance enough to be used for practical ear-EEG-based BCI applications.

16.
Anal Methods ; 14(46): 4749-4755, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36373210

RESUMEN

Colorimetric paper sensors are used in various fields due to their convenience and intuitive manner. However, these sensors present low accuracy in practical use because it is difficult to distinguish color changes for a minute amount of analyte with the naked eye. Herein, we demonstrate that a machine learning (ML)-based paper sensor platform accurately determines the color changes. We fabricated a colorimetric paper sensor by adsorbing polyaniline nanoparticles (PAni-NPs), whose color changes from blue to green when the ambient pH decreases. Adding glucose oxidase (GOx) to the paper sensor enables colorimetric glucose detection. Target analytes (10 µL) were aliquoted onto the paper sensors, and their images were taken with a smartphone under the same conditions in a darkroom. The red-green-blue (RGB) data from the images were extracted and used to train and test three regression models: support vector regression (SVR), decision tree regression (DTR), and random forest regression (RFR). Of the three regression models, RFR performed the best at estimating pH levels (R2 = 0.957) ranging from pH 2 to 10 and glucose concentrations (R2 = 0.922) ranging from 0 to 10 mg mL-1.


Asunto(s)
Colorimetría , Aprendizaje Automático , Colorimetría/métodos , Oxidación-Reducción , Glucosa , Concentración de Iones de Hidrógeno
17.
Sci Rep ; 11(1): 7980, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846489

RESUMEN

In recent years, machine learning techniques have been frequently applied to uncovering neuropsychiatric biomarkers with the aim of accurately diagnosing neuropsychiatric diseases and predicting treatment prognosis. However, many studies did not perform cross validation (CV) when using machine learning techniques, or others performed CV in an incorrect manner, leading to significantly biased results due to overfitting problem. The aim of this study is to investigate the impact of CV on the prediction performance of neuropsychiatric biomarkers, in particular, for feature selection performed with high-dimensional features. To this end, we evaluated prediction performances using both simulation data and actual electroencephalography (EEG) data. The overall prediction accuracies of the feature selection method performed outside of CV were considerably higher than those of the feature selection method performed within CV for both the simulation and actual EEG data. The differences between the prediction accuracies of the two feature selection approaches can be thought of as the amount of overfitting due to selection bias. Our results indicate the importance of correctly using CV to avoid biased results of prediction performance of neuropsychiatric biomarkers.

18.
Brain Sci ; 11(4)2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33800679

RESUMEN

To what extent are different levels of expertise reflected in the functional connectivity of the brain? We addressed this question by using resting-state functional magnetic resonance imaging (fMRI) in mathematicians versus non-mathematicians. To this end, we investigated how the two groups of participants differ in the correlation of their spontaneous blood oxygen level-dependent fluctuations across the whole brain regions during resting state. Moreover, by using the classification algorithm in machine learning, we investigated whether the resting-state fMRI networks between mathematicians and non-mathematicians were distinguished depending on features of functional connectivity. We showed diverging involvement of the frontal-thalamic-temporal connections for mathematicians and the medial-frontal areas to precuneus and the lateral orbital gyrus to thalamus connections for non-mathematicians. Moreover, mathematicians who had higher scores in mathematical knowledge showed a weaker connection strength between the left and right caudate nucleus, demonstrating the connections' characteristics related to mathematical expertise. Separate functional networks between the two groups were validated with a maximum classification accuracy of 91.19% using the distinct resting-state fMRI-based functional connectivity features. We suggest the advantageous role of preconfigured resting-state functional connectivity, as well as the neural efficiency for experts' successful performance.

19.
Comput Math Methods Med ; 2021: 6663996, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37601811

RESUMEN

Ventricular fibrillation (VF) is a cardiovascular disease that is one of the major causes of mortality worldwide, according to the World Health Organization. Heart rate variability (HRV) is a biomarker that is used for detecting and predicting life-threatening arrhythmias. Predicting the occurrence of VF in advance is important for saving patients from sudden death. We extracted features from seven HRV data lengths to predict the onset of VF before nine different forecast times and observed the prediction accuracies. By using only five features, an artificial neural network classifier was trained and validated based on 10-fold cross-validation. Maximum prediction accuracies of 88.18% and 88.64% were observed at HRV data lengths of 10 and 20 s, respectively, at a forecast time of 0 s. The worst prediction accuracy was recorded at an HRV data length of 70 s and a forecast time of 80 s. Our results showed that features extracted from HRV signals near the VF onset could yield relatively high VF prediction accuracies.

20.
IEEE Trans Neural Syst Rehabil Eng ; 28(10): 2102-2112, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32804653

RESUMEN

Previous studies have shown the superior performance of hybrid electroencephalography (EEG)/ near-infrared spectroscopy (NIRS) brain-computer interfaces (BCIs). However, it has been veiled whether the use of a hybrid EEG/NIRS modality can provide better performance for a brain switch that can detect the onset of the intention to turn on a BCI. In this study, we developed such a hybrid EEG/NIRS brain switch and compared its performance with single modality EEG- and NIRS-based brain switch respectively, in terms of true positive rate (TPR), false positive rate (FPR), onset detection time (ODT), and information transfer rate (ITR). In an offline analysis, the performance of a hybrid EEG/NIRS brain switch was significantly improved over that of EEG- and NIRS-based brain switches in general, and in particular a significantly lower FPR was observed for the hybrid EEG/NIRS brain switch. A pseudo-online analysis was additionally performed to confirm the feasibility of implementing an online BCI system with our hybrid EEG/NIRS brain switch. The overall trend of pseudo-online analysis results generally coincided with that of the offline analysis results. No significant difference in all performance measures was also found between offline and pseudo online analysis schemes when the amount of training data was same, with one exception for the ITRs of an EEG brain switch. These offline and pseudo-online results demonstrate that a hybrid EEG/NIRS brain switch can be used to provide a better onset detection performance than that of a single neuroimaging modality.


Asunto(s)
Interfaces Cerebro-Computador , Encéfalo , Electroencefalografía , Humanos , Sistemas en Línea , Espectroscopía Infrarroja Corta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA