Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Liver Transpl ; 29(6): 618-625, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36896964

RESUMEN

Medical assistance in dying (MAiD) has been a legally approved practice in Canada since 2016. Only recently have patients undergoing MAiD also been considered as donors for liver transplantation (LT). This study aimed to evaluate a case series of LT outcomes for recipients with MAiD donors and was paired with a systematic literature review of studies assessing the efficacy of MAiD-associated liver donation. A retrospective chart review of patients registered within the LT Registry at London Health Sciences Centre (LHSC) in London, Ontario, Canada, that had received MAiD donor LT was conducted to develop a case series. Descriptive statistics were produced based on available patient outcomes information. The systematic review included euthanasia due to MAiD being a term exclusive to Canada. Case series had a 100% 1-year graft survival rate, with 50% of patients experiencing early allograft dysfunction but having no significant clinical outcome. A single case of postoperative biliary complication was reported. Median warm ischemic time ranged from 7.8-13 minutes among case series and literature reviews. Utilization of donation after circulatory death allografts procured after MAiD appears to be promising. Mechanisms associated with potential impact in postoperative outcomes include relatively lower warm ischemic time relative to donation after circulatory death Maastricht III graft recipients.


Asunto(s)
Trasplante de Hígado , Suicidio Asistido , Humanos , Trasplante de Hígado/efectos adversos , Estudios Retrospectivos , Donantes de Tejidos , Ontario
2.
J Transl Med ; 21(1): 763, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898798

RESUMEN

BACKGROUND: Myalgic encephalitis/chronic fatigue syndrome (ME/CFS) is a long-term disabling illness without a medically explained cause. Recently during COVID-19 pandemic, many studies have confirmed the symptoms similar to ME/CFS in the recovered individuals. To investigate the virus-related etiopathogenesis of ME/CFS, we conducted a systematic assessment of viral infection frequency in ME/CFS patients. METHODS: We conducted a comprehensive search of PubMed and the Cochrane Library from their inception through December 31, 2022, using selection criteria of viral infection prevalence in ME/CFS patients and controls. Subsequently, we performed a meta-analysis to assess the extent of viral infections' contribution to ME/CFS by comparing the odds ratio between ME/CFS patients and controls (healthy and/or diseased). RESULTS: Finally, 64 studies met our eligibility criteria regarding 18 species of viruses, including a total of 4971 ME/CFS patients and 9221 control subjects. The participants included healthy subjects and individuals with one of 10 diseases, such as multiple sclerosis or fibromyalgia. Two DNA viruses (human herpes virus (HHV)-7 and parvovirus B19, including their co-infection) and 3 RNA viruses (borna disease virus (BDV), enterovirus and coxsackie B virus) showed odds ratios greater than 2.0 compared with healthy and/or diseased subjects. Specifically, BDV exceeded the cutoff with an odds ratio of ≥ 3.47 (indicating a "moderate association" by Cohen's d test) compared to both healthy and diseased controls. CONCLUSION: This study comprehensively evaluated the risk of viral infections associated with ME/CFS, and identified BDV. These results provide valuable reference data for future studies investigating the role of viruses in the causation of ME/CFS.


Asunto(s)
Encefalitis , Síndrome de Fatiga Crónica , Virosis , Humanos , Encefalitis/virología , Síndrome de Fatiga Crónica/virología , Fibromialgia/virología , Virosis/complicaciones
3.
Sensors (Basel) ; 20(5)2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155729

RESUMEN

Internet-of-things (IoT) is a wide spreading technique that enables intelligence to the everyday objects, however, IoT devices are limited in computation and memory space due to their small physical sizes. As a result, IoT applications generally connect to the remote cloud that provides high computation and large storage. To enhance this communication, some IoT devices are equipped with multiple networks, e.g., cellular or Wi-Fi, by using Multipath TCP (MPTCP). However, MPTCP requires large buffer memory space compared to the legacy TCP, which is problematic for low-memory IoT devices. This paper proposes a new MPTCP scheme that leverages the multi-homed feature of low-memory IoT devices. Our design utilizes an application-level distributor that transmits packets to each MPTCP socket at each endpoint of the data. This scheme cleverly avoids the buffer blocking problem, while still maintaining the benefits of multi-homing. The main contribution of our paper is three-fold. First, our proposal achieves the benefits of multipath while avoiding buffer blocking due to out-of-order packets. Second, since our scheme utilizes the original MPTCP and modifies only the application level, it can be deployed more easily to the legacy systems. Finally, our experimental results, conducted on a Linux testbed and real-world cellular/Wi-Fi, show that the proposed scheme requires only half or less memory to achieve the performance of MPTCP.

4.
Opt Express ; 23(5): 5809-21, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25836810

RESUMEN

We describe a three-dimensional microscopy technique based on spectral and frequency encoding. The method employs a wavelength-swept laser to illuminate a specimen with a spectrally-dispersed line focus that sweeps over the specimen in time. The spatial information along each spectral line is further mapped into different modulation frequencies. Spectrally-resolved detection and subsequent Fourier analysis of the back-scattered light from the specimen therefore enable high-speed, scanner-free imaging of the specimen with a single-element photodetector. High-contrast, three-dimensional imaging capability of this method is demonstrated by presenting images of various materials and biological specimens.

5.
Heliyon ; 10(6): e28326, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38532995

RESUMEN

The various strains of influenza virus cause respiratory symptoms in humans every year and annual vaccinations are recommended. Due to its RNA-type genes and segmented state, it belongs to a virus that mutates frequently with antigenic drift and shift, giving rise to various strains. Each year, the World Health Organization identifies the epidemic strains and operates a global surveillance system to suggest the viral composition for the influenza vaccine. Influenza viruses, which have multiple viral strains, are produced in the format of multivalent vaccine. However, the multivalent vaccine has a possibility of causing immune interference by introducing multiple strain-specific antigens in a single injection. Therefore, evaluating immune interference phenomena is essential when assessing multivalent vaccines. In this study, the protective ability and immunogenicity of multivalent and monovalent vaccines were evaluated in mice to assess immune interference in the multivalent vaccine. Monovalent and multivalent vaccines were manufactured using the latest strain of the 2022-2023 seasonal influenza virus selected by the World Health Organization. The protective abilities of both types of vaccines were tested through hemagglutination inhibition test. The immunogenicity of multivalent and monovalent vaccines were tested through enzyme-linked immunosorbent assay to measure the cellular and humoral immunity expression rates. As a result of the protective ability and immunogenicity test, higher level of virus neutralizing ability and greater amount of antibodies in both IgG1 and IgG2 were confirmed in the multivalent vaccine. No immune interference was found to affect the protective capacity and immune responses of the multivalent vaccines.

6.
ACS Nano ; 18(6): 4847-4861, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38189789

RESUMEN

Infectious diseases pose persistent threats to public health, demanding advanced vaccine technologies. Nanomaterial-based delivery systems offer promising solutions to enhance immunogenicity while minimizing reactogenicity. We introduce a self-assembled vaccine (SAV) platform employing antigen-polymer conjugates designed to facilitate robust immune responses. The SAVs exhibit efficient cellular uptake by dendritic cells (DCs) and macrophages, which are crucial players in the innate immune system. The high-density antigen presentation of this SAV platform enhances the affinity for DCs through multivalent recognition, significantly augmenting humoral immunity. SAV induced high levels of immunoglobulin G (IgG), IgG1, and IgG2a, suggesting that mature DCs efficiently induced B cell activation through multivalent antigen recognition. Universality was confirmed by applying it to respiratory viruses, showcasing its potential as a versatile vaccine platform. Furthermore, we have also demonstrated strong protection against influenza A virus infection with SAV containing hemagglutinin, which is used in influenza A virus subunit vaccines. The efficacy and adaptability of this nanostructured vaccine present potential utility in combating infectious diseases.


Asunto(s)
Enfermedades Transmisibles , Virus de la Influenza A , Vacunas contra la Influenza , Nanoestructuras , Humanos , Antígenos , Inmunidad Humoral , Inmunoglobulina G , Anticuerpos Antivirales , Adyuvantes Inmunológicos
7.
Biomed Pharmacother ; 176: 116781, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805966

RESUMEN

Influenza A virus causes numerous deaths and infections worldwide annually. Therefore, we have considered nanobodies as a potential treatment for patients with severe cases of influenza. We developed a nanobody that was expected to have protective efficacy against the A/California/04/2009 (CA/04; pandemic 2009 flu strain) and evaluated its therapeutic efficacy against CA/04 in mice experiments. This nanobody was derived from the immunization of the alpaca, and the inactivated CA/04 virus was used as an immunogen. We successfully generated a nanobody library through bio-panning, phage ELISA, and Bio-layer interferometry. Moreover, we confirmed that administering nanobodies after lethal doses of CA/04 reduced viral replication in the lungs and influenza-induced clinical signs in mice. These research findings will help to develop nanobodies as viral therapeutics for CA/04 and other infectious viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Anticuerpos de Dominio Único , Animales , Anticuerpos de Dominio Único/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Femenino , Ratones Endogámicos BALB C , Camélidos del Nuevo Mundo/inmunología , Pulmón/inmunología , Pulmón/virología , Pulmón/efectos de los fármacos , Pulmón/patología , Anticuerpos Antivirales/inmunología , Replicación Viral/efectos de los fármacos
8.
Vaccine ; 42(2): 69-74, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38097457

RESUMEN

BACKGROUND: As the nasal mucosa is the initial site of infection for COVID-19, intranasal vaccines are more favorable than conventional vaccines. In recent clinical studies, intranasal immunization has been shown to generate higher neutralizing antibodies; however, there is a lack of evidence on sterilizing immunity in the upper airway. Previously, we developed a recombinant measles virus encoding the spike protein of SARS-CoV-2 (rMeV-S), eliciting humoral and cellular immune responses against SARS-CoV-2. OBJECTIVES: In this study, we aim to provide an experiment on nasal vaccines focusing on a measles virus platform as well as injection routes. STUDY DESIGN: Recombinant measles viruses expressing rMeV-S were prepared, and 5 × 105 PFUs of rMeV-S were administered to Syrian golden hamsters via intramuscular or intranasal injection. Subsequently, the hamsters were challenged with inoculations of 1 × 105 PFUs of SARS-CoV-2 and euthanized 4 days post-infection. Neutralizing antibodies and RBD-specific IgG in the serum and RBD-specific IgA in the bronchoalveolar lavage fluid (BALF) were measured, and SARS-CoV-2 clearance capacity was determined via quantitative reverse-transcription PCR (qRT-PCR) analysis and viral titer measurement in the upper respiratory tract and lungs. Immunohistochemistry and histopathological examinations of lung samples from experimental hamsters were conducted. RESULTS: The intranasal immunization of rMeV-S elicits protective immune responses and alleviates virus-induced pathophysiology, such as body weight reduction and lung weight increase in hamsters. Furthermore, lung immunohistochemistry demonstrated that intranasal rMeV-S immunization induces effective SARS-CoV-2 clearance that correlates with viral RNA content, as determined by qRT-PCR, in the lung and nasal wash samples, SARS-CoV-2 viral titers in lung, nasal wash, BALF samples, serum RBD-specific IgG concentration, and RBD-specific IgA concentration in the BALF. CONCLUSION: An intranasal vaccine based on the measles virus platform is a promising strategy owing to the typical route of infection of the virus, the ease of administration of the vaccine, and the strong immune response it elicits.


Asunto(s)
COVID-19 , Sarampión , Orthopoxvirus , Vacunas , Animales , Cricetinae , SARS-CoV-2 , Virus del Sarampión/genética , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus , Inmunización , Mucosa Nasal , Anticuerpos Neutralizantes , Inmunoglobulina A , Inmunoglobulina G , Anticuerpos Antivirales , Administración Intranasal
9.
Front Microbiol ; 14: 1256090, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779710

RESUMEN

Subtype H10 avian influenza viruses (AIV) are distributed worldwide in wild aquatic birds, and can infect humans and several other mammalian species. In the present study, we investigated the naturally mutated PB2 gene in A/aquatic bird/South Korea/SW1/2018 (A/SW1/18, H10N1), isolated from wild birds during the 2018-2019 winter season. This virus was originally found in South Korea, and is similar to isolates from mainland China and Mongolia. It had low pathogenicity, lacked a multi-basic cleavage site, and showed a binding preference for α2,3-linked sialic acids. However, it can infect mice, causing severe disease and lung pathology. SW1 was also transmitted by direct contact in ferrets, and replicated in the respiratory tract tissue, with no evidence of extrapulmonary spread. The pathogenicity and transmissibility of SW1 in mouse and ferret models were similar to those of the pandemic strain A/California/04/2009 (A/CA/04, H1N1). These factors suggest that subtype H10 AIVs have zoonotic potential and may transmit from human to human, thereby posing a potential threat to public health. Therefore, the study highlights the urgent need for closer monitoring of subtype H10 AIVs through continued surveillance of wild aquatic birds.

10.
Vaccines (Basel) ; 10(5)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35632432

RESUMEN

COVID-19 is caused by severe acute respiratory syndrome virus type 2 (SARS-CoV-2), which can infect both humans and animals. SARS-CoV-2 originated from bats and can affect various species capable of crossing the species barrier due to active mutation. Although reports on reverse zoonosis (human-to-animal transmission) of SARS-CoV-2 remain limited, reverse zoonosis has been reported in many species such as cats, tigers, minks, etc. Therefore, transmission to more animals cannot be ruled out. Moreover, the wide distribution of SARS-CoV-2 in the human population could result in an increased risk of reverse zoonosis. To counteract reverse zoonosis, we developed the first COVID-19 subunit vaccines for dogs, which are representative companion animals, and the vaccine includes the SARS-CoV-2 recombinant protein of whole S1 protein and the receptor-binding domain (RBD). A subunit vaccine is a vaccine developed by purifying only the protein region that induces an immune response instead of the whole pathogen. This type of vaccine is safer than the whole virus vaccine because there is no risk of infection and proliferation through back-mutation of the virus. Vaccines were administered to beagles twice at an interval of 3 weeks subcutaneously and antibody formation rates were assessed in serum. We identified a titer, comparable to that of vaccinated people, shown to be sufficient to protect against SARS-CoV-2. Therefore, the vaccination of companion animals, such as dogs, may prevent reverse zoonosis by protecting animals from SARS-CoV-2; thus, reverse zoonosis of COVID-19 is preventable.

11.
J Yeungnam Med Sci ; 39(2): 116-123, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34607408

RESUMEN

BACKGRUOUND: Recently, there have been various developments in medical service robots (MSRs). However, few studies have examined the perceptions of those who use it. The purpose of this study is to identify user perceptions of MSRs. METHODS: We conducted a survey of 320 patients, doctors, and nurses. The contents of the survey were organized as follows: external appearances, perceptions, expected utilization, possible safety accidents, and awareness of their responsibilities. Statistical analyses were performed using t-test, chi-square test, and analysis of variance. RESULTS: The most preferred appearance was the animal type, with a screen. The overall average score of positive questions was 3.64±0.98 of 5 points and that of negative questions was 3.24±0.99. Thus, the results revealed that the participants had positive perceptions of MSR. The overall average of all expected utilization was 4.05±0.84. The most expected utilization was to guide hospital facilities. The most worrisome accident was exposure to personal information. Moreover, participants thought that the overall responsibility of the robot user (hospital) was greater than that of the robot manufacturer in the case of safety accidents. CONCLUSION: The perceptions of MSRs used in hospital wards were positive, and the overall expected utilization was high. It is necessary to recognize safety accidents for such robots, and sufficient attention is required when developing and manufacturing robots.

12.
Biosens Bioelectron ; 74: 469-75, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26176206

RESUMEN

We present a direct, rapid and chemical-free detection method for hemoglobin concentration ([Hb]), based on photothermal angular light scattering. The iron oxides contained in hemoglobin molecules exhibit high absorption of 532-nm light and generate heat under the illumination of 532-nm light, which subsequently alters the refractive index of blood. We measured this photothermal change in refractive index by employing angular light scattering spectroscopy with the goal of quantifying [Hb] in blood samples. Highly sensitive [Hb] measurement of blood samples was performed by monitoring the shifts in angularly dispersed scattering patterns from the blood-loaded microcapillary tubes. Our system measured [Hb] over the range of 0.35-17.9 g/dL with a detection limit of ~0.12 g/dL. Our sensor was characterized by excellent correlation with a reference hematology analyzer (r>0.96), and yielded a precision of 0.63 g/dL for a blood sample of 9.0 g/dL.


Asunto(s)
Técnicas Biosensibles/instrumentación , Eritrocitos/metabolismo , Hemoglobinas/metabolismo , Iluminación/instrumentación , Refractometría/instrumentación , Adulto , Diseño de Equipo , Análisis de Falla de Equipo , Calor , Humanos , Luz , Masculino , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad , Adulto Joven
13.
J Biomed Opt ; 20(3): 036016, 2015 03.
Artículo en Inglés | MEDLINE | ID: mdl-25813913

RESUMEN

We present an implementation of spectrally encoded slit confocal microscopy. The method employs a rapid wavelength-swept laser as the light source and illuminates a specimen with a line focus that scans through the specimen as the wavelength sweeps. The reflected light from the specimen is imaged with a stationary line scan camera, in which the finite pixel height serves as a slit aperture. This scanner-free operation enables a simple and cost-effective implementation in a small form factor, while allowing for the three-dimensional imaging of biological samples.


Asunto(s)
Imagenología Tridimensional/métodos , Rayos Láser , Iluminación/métodos , Microscopía Confocal/métodos , Animales , Bovinos , Corazón/diagnóstico por imagen , Hígado/diagnóstico por imagen , Ratones , Miocardio/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA