Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Life Sci ; 306: 120856, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35926592

RESUMEN

AIMS: Several studies have linked gut microbes to human diseases. Most of the mechanisms by which lactic acid bacteria have beneficial effects on the human body are related to immune modulation. Controlled studies of the ability of lactic acid bacteria to absorb phosphorus directly from the intestine and thereby control serum phosphorus level in in vivo uremic animal models are limited. MATERIALS AND METHODS: We screened lactic acid bacteria living in Korean fermented foods to identify those that absorb the most phosphorus and noted Lactiplantibacillus paraplantarum KCCM 11826P. The mechanism through which better intracellular absorption of phosphorus occurs in this strain was studied using genomic DNA sequencing. After the strain was administered to 5/6 nephrectomized rats for 6 weeks, it was observed whether hyperphosphatemia had improved. KEY FINDINGS: The L. paraplantarum KCCM 11826P strain has a polyP gene cluster; thus, it absorbs phosphorus better than other bacteria and can suppress strains that produce indole. Supplementing the diets of 5/6 nephrectomized rats with this L. paraplantarum strain significantly decreased serum phosphate level (by 22 %) and reduced blood indoxyl sulphate concentration (by 40 %) compared with vehicle treatment. SIGNIFICANCE: These results suggest that Lactiplantibacillus preparations can be used for multiple purposes, such as the removal of phosphorus and uremic toxins from patients with chronic kidney disease (CKD). This study also demonstrates the novel concept of a probiotic phosphate binder.


Asunto(s)
Hiperfosfatemia , Probióticos , Insuficiencia Renal Crónica , Animales , Humanos , Lactobacillus , Nefrectomía , Fosfatos , Fósforo , Ratas , Insuficiencia Renal Crónica/terapia
2.
Mar Genomics ; 55: 100788, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32563695

RESUMEN

Paenibacillus is widely distributed in various environments and has the potential for use as a biotechnological agent in industrial processes. Here, we report the complete genome sequence of the marine bacterium, Paenibacillus xylanexedens PAMC 22703, which utilizes xylan. The P. xylanexedens PAMC 22703 strain was isolated from marine sediments. P. xylanexedens PAMC 22703 utilizes xylan as a carbon source to grow. The genome sequence clarified that this strain possesses genes for utilizing xylan. The complete genome sequence contained one chromosome (7,053,622 bp with 46.0% GC content) and one plasmid (44,617 bp with 44.1% C + G content). The genome harbored genes that fully deploy the xylan assimilation pathway. The complete genome sequence of P. xylanexedens PAMC 22703 would prove useful in acquiring information for its application with xylan in various industries.


Asunto(s)
Genoma Bacteriano , Paenibacillus/genética , Paenibacillus/metabolismo , Secuenciación Completa del Genoma , Xilanos/metabolismo
3.
3 Biotech ; 10(4): 185, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32257741

RESUMEN

Saccharomyces cerevisiae KCCM 51299, a potential probiotic yeast overproducing glutathione, has been isolated from among 272 yeast strains from the relatively safe Nuruk. The genome sequence of S. cerevisiae KCCM 51299 was analyzed and a near-complete genome (12 Mb) with 19 contigs was assembled after PacBio single-molecule real-time (SMRT) sequencing. The genome of S. cerevisiae KCCM 51299 was compared to the S. cerevisiae s288c reference genome. Additionally, genes involved in glutathione biosynthesis were identified, and the glutathione biosynthesis pathway was constructed in silico based on these genes. Furthermore, S. cerevisiae KCCM 51299 genes were compared with those in other yeast genomes. Finally, genome-scale in silico flux analysis was carried out, and a metabolic engineering strategy for glutathione biosynthesis was generated. These results provide useful information to further develop eukaryotic probiotics to overproduce glutathione.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA