RESUMEN
Fructose consumption is linked to the rising incidence of obesity and cancer, which are two of the leading causes of morbidity and mortality globally1,2. Dietary fructose metabolism begins at the epithelium of the small intestine, where fructose is transported by glucose transporter type 5 (GLUT5; encoded by SLC2A5) and phosphorylated by ketohexokinase to form fructose 1-phosphate, which accumulates to high levels in the cell3,4. Although this pathway has been implicated in obesity and tumour promotion, the exact mechanism that drives these pathologies in the intestine remains unclear. Here we show that dietary fructose improves the survival of intestinal cells and increases intestinal villus length in several mouse models. The increase in villus length expands the surface area of the gut and increases nutrient absorption and adiposity in mice that are fed a high-fat diet. In hypoxic intestinal cells, fructose 1-phosphate inhibits the M2 isoform of pyruvate kinase to promote cell survival5-7. Genetic ablation of ketohexokinase or stimulation of pyruvate kinase prevents villus elongation and abolishes the nutrient absorption and tumour growth that are induced by feeding mice with high-fructose corn syrup. The ability of fructose to promote cell survival through an allosteric metabolite thus provides additional insights into the excess adiposity generated by a Western diet, and a compelling explanation for the promotion of tumour growth by high-fructose corn syrup.
Asunto(s)
Fructosa/farmacología , Jarabe de Maíz Alto en Fructosa/farmacología , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Nutrientes/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Activación Enzimática , Femenino , Fructoquinasas/metabolismo , Fructosa/metabolismo , Jarabe de Maíz Alto en Fructosa/metabolismo , Hipoxia/dietoterapia , Hipoxia/patología , Mucosa Intestinal/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Piruvato Quinasa/metabolismoRESUMEN
Saliva is vital to oral health, fulfilling multiple functions in the oral cavity. Three pairs of major salivary glands and hundreds of minor salivary glands contribute to saliva production. The secretory acinar cells within these glands include two distinct populations. Serous acinar cells secrete a watery saliva containing enzymes, while mucous acinar cells secrete a more viscous fluid containing highly glycosylated mucins. Despite their shared developmental origins, the parotid gland (PG) is comprised of only serous acinar cells, while the sublingual gland (SLG) contains predominantly mucous acinar cells. The instructive signals that govern the identity of serous versus mucous acinar cell phenotypes are not yet known. The homeobox transcription factor Nkx2.3 is uniquely expressed in the SLG. Disruption of the Nkx2.3 gene was reported to delay the maturation of SLG mucous acinar cells. To examine whether Nkx2.3 plays a role in directing the mucous cell phenotype, we analyzed SLG from Nkx2.3-/- mice using RNAseq, immunostaining and proteomic analysis of saliva. Our results indicate that Nkx2.3, most likely in concert with other transcription factors uniquely expressed in the SLG, is a key regulator of the molecular program that specifies the identity of mucous acinar cells.
Asunto(s)
Proteómica , Factores de Transcripción , Ratones , Animales , Factores de Transcripción/genética , Glándulas Salivales , Glándula Sublingual , Glándula Parótida , Proteínas de Homeodominio/genéticaRESUMEN
The cancer anorexia cachexia syndrome is a systemic metabolic disorder characterized by the catabolism of stored nutrients in skeletal muscle and adipose tissue that is particularly prevalent in nonsmall cell lung cancer (NSCLC). Loss of skeletal muscle results in functional impairments and increased mortality. The aim of the present study was to characterize the changes in systemic metabolism in a genetically engineered mouse model of NSCLC. We show that a portion of these animals develop loss of skeletal muscle, loss of adipose tissue, and increased inflammatory markers mirroring the human cachexia syndrome. Using noncachexic and fasted animals as controls, we report a unique cachexia metabolite phenotype that includes the loss of peroxisome proliferator-activated receptor-α (PPARα) -dependent ketone production by the liver. In this setting, glucocorticoid levels rise and correlate with skeletal muscle degradation and hepatic markers of gluconeogenesis. Restoring ketone production using the PPARα agonist, fenofibrate, prevents the loss of skeletal muscle mass and body weight. These results demonstrate how targeting hepatic metabolism can prevent muscle wasting in lung cancer, and provide evidence for a therapeutic strategy.
Asunto(s)
Caquexia/prevención & control , Carcinoma de Pulmón de Células no Pequeñas/complicaciones , Fenofibrato/uso terapéutico , Neoplasias Pulmonares/complicaciones , PPAR gamma/agonistas , Aminoácidos/metabolismo , Animales , Caquexia/sangre , Caquexia/etiología , Evaluación Preclínica de Medicamentos , Fenofibrato/farmacología , Gluconeogénesis , Cuerpos Cetónicos/deficiencia , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , PPAR gamma/metabolismoRESUMEN
AIM: To investigate systemic regulators of the cancer-associated cachexia syndrome (CACS) in a pre-clinical model for lung cancer with the goal to identify therapeutic targets for tissue wasting. METHODS: Using the Kras/Lkb1 (KL) mouse model, we found that CACS is associated with white adipose tissue (WAT) dysfunction that directly affects skeletal muscle homeostasis. WAT transcriptomes showed evidence of reduced adipogenesis, and, in agreement, we found low levels of circulating adiponectin. To preserve adipogenesis and restore adiponectin levels, we treated mice with the PPAR-γ agonist, rosiglitazone. RESULTS: Rosiglitazone treatment increased serum adiponectin levels, delayed weight loss, and preserved skeletal muscle and adipose tissue mass, as compared to vehicle-treated mice. The preservation of muscle mass with rosiglitazone was associated with increases in AMPK and AKT activity. Similarly, activation of the adiponectin receptors in muscle cells increased AMPK activity, anabolic signaling, and protein synthesis. CONCLUSION: Our data suggest that PPAR-γ agonists may be a useful adjuvant therapy to preserve tissue mass in lung cancer.
Asunto(s)
Adiponectina , Caquexia , Neoplasias Pulmonares , Rosiglitazona , Animales , Rosiglitazona/farmacología , Rosiglitazona/uso terapéutico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Caquexia/metabolismo , Caquexia/tratamiento farmacológico , Adiponectina/metabolismo , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , PPAR gamma/metabolismo , PPAR gamma/agonistas , Masculino , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Ratones Endogámicos C57BL , Tiazolidinedionas/farmacología , Tiazolidinedionas/uso terapéuticoRESUMEN
Adeno-associated virus (AAV)-based vectors are commonly used for delivering transgenes in gene therapy studies, but they are also known to cause dorsal root ganglia (DRG) and peripheral nerve toxicities in animals. However, the functional implications of these pathologic findings and their time course remain unclear. At 2, 4, 6, and 8 weeks following a single dose of an AAV9 vector carrying human frataxin transgene in rats, non-standard functional assessments, including von Frey filament, electrophysiology, and Rotarod tests, were conducted longitudinally to measure allodynia, nerve conduction velocity, and coordination, respectively. Additionally, DRGs, peripheral nerves, brain and spinal cord were evaluated histologically and circulating neurofilament light chain (NfL) was quantified at 1, 2, 4, and 8 weeks, respectively. At 2 and 4 weeks after dosing, minimal-to-moderate nerve fiber degeneration and neuronal degeneration were observed in the DRGs in some of the AAV9 vector-dosed animals. At 8 weeks, nerve fiber degeneration was observed in DRGs, with or without neuronal degeneration, and in sciatic nerves of all AAV9 vector-dosed animals. NfL values were higher in AAV9 vector-treated animals at weeks 4 and 8 compared with controls. However, there were no significant differences in the three functional endpoints evaluated between the AAV9 vector- and vehicle-dosed animals, or in a longitudinal comparison between baseline (predose), 4, and 8 week values in the AAV9 vector-dose animals. These findings demonstrate that there is no detectable functional consequence to the minimal-to-moderate neurodegeneration observed with our AAV9 vector treatment in rats, suggesting a functional tolerance or reserve for loss of DRG neurons after systemic administration of AAV9 vector.
Asunto(s)
Ganglios Espinales , Enfermedades del Sistema Nervioso Periférico , Humanos , Ratas , Animales , Ganglios Espinales/patología , Fibras Nerviosas , Nervio Ciático , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , NeuronasRESUMEN
Introduction: Wistar Han rats are a preferred strain of rodents for general toxicology and safety pharmacology studies in drug development. In some of these studies, visual functional tests that assess for retinal toxicity are included as an additional endpoint. Although the influence of gender on human retinal function has been documented for more than 6 decades, preclinically it is still uncertain if there are differences in retinal function between naïve male and female Wistar Han rats. Methods: In this study, sex-related differences in the retinal function were quantified by analyzing electroretinography (ERG) in 7-9-week-old (n = 52 males and 51 females) and 21-23-week-old Wistar Han rats (n = 48 males and 51 females). Optokinetic tracking response, brainstem auditory evoked potential, ultrasonic vocalization and histology were tested and evaluated in a subset of animals to investigate the potential compensation mechanisms of spontaneous blindness. Results/Discussion: Absence of scotopic and photopic ERG responses was found in 13% of 7-9-week-old (7/52) and 19% of 21-23-week-old males (9/48), but none of female rats (0/51). The averaged amplitudes of rod- and cone-mediated ERG b-wave responses obtained from males were significantly smaller than the amplitudes of the same responses from age-matched females (-43% and -26%, respectively) at 7-9 weeks of age. There was no difference in the retinal and brain morphology, brainstem auditory responses, or ultrasonic vocalizations between the animals with normal and abnormal ERGs at 21-23 weeks of age. In summary, male Wistar Han rats had altered retinal responses, including a complete lack of responses to test flash stimuli (i.e., blindness), when compared with female rats at 7-9 and 21-23 weeks of age. Therefore, sex differences should be considered when using Wistar Han rats in toxicity and safety pharmacology studies with regards to data interpretation of retinal functional assessments.
RESUMEN
The cancer associated cachexia syndrome (CACS) is a systemic metabolic disorder resulting in loss of body weight due to skeletal muscle and adipose tissues atrophy. CACS is particularly prominent in lung cancer patients, where it contributes to poor quality of life and excess mortality. Using the Kras/Lkb1 (KL) mouse model, we found that CACS is associated with white adipose tissue (WAT) dysfunction that directly affects skeletal muscle homeostasis. WAT transcriptomes showed evidence of reduced adipogenesis, and, in agreement, we found low levels of circulating adiponectin. To preserve adipogenesis and restore adiponectin levels, we treated mice with the PPAR-γ agonist, rosiglitazone. Rosiglitazone treatment increased serum adiponectin levels, delayed weight loss, and preserved skeletal muscle and adipose tissue mass, as compared to vehicle-treated mice. The preservation of muscle mass with rosiglitazone was associated with increases in AMPK and AKT activity. Similarly, activation of the adiponectin receptors in muscle cells increased AMPK activity, anabolic signaling, and protein synthesis. Our data suggest that PPAR-γ agonists may be a useful adjuvant therapy to preserve tissue mass in lung cancer.
RESUMEN
The phosphoinositide 3-kinase p110α is an essential mediator of insulin signaling and glucose homeostasis. We interrogated the human serine, threonine, and tyrosine kinome to search for novel regulators of p110α and found that the Hippo kinases phosphorylate p110α at T1061, which inhibits its activity. This inhibitory state corresponds to a conformational change of a membrane-binding domain on p110α, which impairs its ability to engage membranes. In human primary hepatocytes, cancer cell lines, and rodent tissues, activation of the Hippo kinases MST1/2 using forskolin or epinephrine is associated with phosphorylation of T1061 and inhibition of p110α, impairment of downstream insulin signaling, and suppression of glycolysis and glycogen synthesis. These changes are abrogated when MST1/2 are genetically deleted or inhibited with small molecules or if the T1061 is mutated to alanine. Our study defines an inhibitory pathway of PI3K signaling and a link between epinephrine and insulin signaling.
Asunto(s)
Proteínas Serina-Treonina Quinasas , Humanos , Animales , Ratones , Línea Celular , Ratones Endogámicos C57BL , Masculino , Femenino , Epinefrina/farmacología , Activación Enzimática/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Eliminación de Gen , Colforsina/farmacología , Insulina/metabolismo , Fosforilación/efectos de los fármacos , Vía de Señalización Hippo/efectos de los fármacos , Vía de Señalización Hippo/genéticaRESUMEN
OBJECTIVE: The sphingosine-1-phosphate (S1P) receptor agonist fingolimod (FTY720), that has shown efficacy in advanced multiple sclerosis clinical trials, decreases reperfusion injury in heart, liver, and kidney. We therefore tested the therapeutic effects of fingolimod in several rodent models of focal cerebral ischemia. To assess the translational significance of these findings, we asked whether fingolimod improved long-term behavioral outcomes, whether delayed treatment was still effective, and whether neuroprotection can be obtained in a second species. METHODS: We used rodent models of middle cerebral artery occlusion and cell-culture models of neurotoxicity and inflammation to examine the therapeutic potential and mechanisms of neuroprotection by fingolimod. RESULTS: In a transient mouse model, fingolimod reduced infarct size, neurological deficit, edema, and the number of dying cells in the core and periinfarct area. Neuroprotection was accompanied by decreased inflammation, as fingolimod-treated mice had fewer activated neutrophils, microglia/macrophages, and intercellular adhesion molecule-1 (ICAM-1)-positive blood vessels. Fingolimod-treated mice showed a smaller infarct and performed better in behavioral tests up to 15 days after ischemia. Reduced infarct was observed in a permanent model even when mice were treated 4 hours after ischemic onset. Fingolimod also decreased infarct size in a rat model of focal ischemia. Fingolimod did not protect primary neurons against glutamate excitotoxicity or hydrogen peroxide, but decreased ICAM-1 expression in brain endothelial cells stimulated by tumor necrosis factor alpha. INTERPRETATION: These findings suggest that anti-inflammatory mechanisms, and possibly vasculoprotection, rather than direct effects on neurons, underlie the beneficial effects of fingolimod after stroke. S1P receptors are a highly promising target in stroke treatment.
Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/prevención & control , Inmunosupresores/uso terapéutico , Glicoles de Propileno/uso terapéutico , Esfingosina/análogos & derivados , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Clorhidrato de Fingolimod , Técnicas In Vitro , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/inmunología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Síndromes de Neurotoxicidad/prevención & control , Glicoles de Propileno/farmacología , Ratas , Receptores de Lisoesfingolípidos/agonistas , Esfingosina/farmacología , Esfingosina/uso terapéutico , Accidente Cerebrovascular/prevención & controlRESUMEN
Rodents emit ultrasonic vocalizations (USVs) above the human hearing threshold of ~ 20 kHz to communicate emotional states and to coordinate their social interactive behavior. Twenty-two kHz USVs emitted by adult rats have been reported in a variety of aversive social and behavioral situations. They occur not only under painful or restraining conditions but can also be evoked by gentle cutaneous touch or airflow. This study aimed to test if placement of a human hand in a cage can evoke 22-kHz USVs. It was found that 36% of the adult male Sprague-Dawley and 13% of the adult male Wistar Han rats emitted 22-kHz USVs when a gloved hand was introduced into the cages. Average vocalization onset latencies were 5.0 ± 4.4 s (Sprague-Dawley) and 7.4 ± 4.0 s (Wistar Han) and the USVs had a stable frequency (22 kHz) across the calls, ranging from 0.1 to 2.3 seconds in duration. Surprisingly, no 22-kHz USVs were found in any female Wistar Han rats tested. To further explore the mechanisms underlying this observation, we compared retinal function, basal serum corticosterone, and testosterone levels between the 22-kHz USV responders and non-responders. None of these parameters or endpoints showed any significant differences between the two cohorts. The results suggest that the introduction of a gloved-hand inside the cage can trigger adult male albino rats to emit 22-kHz ultrasonic vocalizations. This response should be considered in USV studies and animal welfare.
Asunto(s)
Ultrasonido , Vocalización Animal , Humanos , Animales , Masculino , Femenino , Ratas , Vocalización Animal/fisiología , Ratas Wistar , Ratas Sprague-Dawley , Conducta SocialRESUMEN
Cachexia is a debilitating comorbidity affecting many lung cancer patients. We have previously found that cachectic mice with lung cancer have reduced serum ketone body levels due to low PPARα activity in the liver. Restoring hepatic PPARα activity with fenofibrate increased circulating ketones and delayed muscle and white adipose tissue wasting. We hypothesized that the loss of circulating ketones plays a pathophysiologic role in cachexia and performed two dietary intervention studies to test this hypothesis. In the first study, male and female mice were randomized to consume either a very low carbohydrate, ketogenic diet (KD) or normal chow (NC) after undergoing tumor induction. The KD successfully restored serum ketone levels and decreased blood glucose in cachectic mice but did not improve body weight maintenance or survival. In fact, there was a trend for the KD to worsen survival in male but not in female mice. In the second study, we compounded a ketone ester supplement into the NC diet (KE) and randomized tumor-bearing mice to KE or NC after tumor induction. We confirmed that KE was able to acutely and chronically increase ketone body abundance in the serum compared to NC. However, the restoration of ketones in the circulation was not able to improve body weight maintenance or survival in male or female mice with lung cancer. Finally, we investigated PPARα activity in the liver of mice fed KE and NC and found that animals fed a ketone ester supplement showed a significant increase in mRNA expression of several PPARα targets. These data negate our initial hypothesis and suggest that restoring ketone body availability in the circulation of mice with lung cancer does not alter cachexia development or improve survival, despite increasing hepatic PPARα activity.
RESUMEN
INTRODUCTION: In pharmacology and toxicology studies, the glomerular filtration rate (GFR) is the gold standard for the assessment of renal function, and the renal clearance of inulin in blood measured by photometers is known as a filtration marker for the determination of GFR. Preclinically, a non-invasive GFR measurement method was recently developed in which near-infrared fluorescently labelled inulin (GFR-Vivo 680) was scanned with fluorescence molecular tomography (FMT). However, measurement of GFR using FMT has major disadvantages and technical challenges, such as requiring experienced skills in animal handling and rapid and precise time management. Additionally, fur and skin pigmentation may severely compromise imaging due to tissue fluorescence absorption. To overcome these drawbacks of FMT imaging, we have developed an in- and ex vivo hybrid method for measuring GFR using the in vivo imaging system (IVIS). METHODS: An IVIS-based imaging method was tested to determine the clearance kinetics of plasma GFR-Vivo 680 after a single bolus injection in conscious C57BL/6 mice administered vehicle or cyclosporine A (CsA, 80 mg/kg) for 14 days. RESULTS: Based on a two-compartment model fitting, the estimated GFR was 235 ± 53 and 189 ± 19 µL/min in vehicle-treated and CsA-treated male mice, respectively (p < 0.01). Our assay revealed the decreased GFR, similar to the sensitivity of FMT imaging, which yielded comparable GFR values (229 ± 61 and 151 ± 35 µL/min in vehicle-treated and CsA-treated mice, respectively, p < 0.01), and to those previously reported in the literature. DISCUSSION: These studies demonstrate the feasibility of IVIS imaging measurement of inulin clearance in untreated, vehicle-treated and cyclosporine A-treated mice. We propose this new method as an alternative, simple, and versatile way to measure GFR in vivo and ex vivo in pharmacological and toxicological studies.
Asunto(s)
Inulina , Animales , Tasa de Filtración Glomerular , Pruebas de Función Renal , Cinética , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
In oncology research, while xenograft tumor models are easily visualized and humane endpoints can be clearly defined, metastatic tumor models are often based on more subjective clinical observations as endpoints. This study aimed at identifying objective non-invasive criteria for predicting imminent distress and mortality in metastatic lung tumor-bearing mice. BALB/c and C57BL/6 mice were inoculated with CT26 or B16F10 cells, respectively. The mice were housed in Vium smart cages to continuously monitor and stream respiratory rate and locomotion for up to 28 days until scheduled euthanasia or humane endpoint criteria were met. Body weight and body temperature were measured during the study. On days 11, 14, 17 and 28, lungs of subsets of animals were microCT imaged in vivo to assess lung metastasis progression and then euthanized for lung microscopic evaluations. Beginning at day 21, most tumor-bearing animals developed increased respiratory rates followed by decreased locomotion 1-2 days later, compared with the baseline values. Increases in respiratory rate did not correlate to surface tumor nodule counts or lung weight. Body weight measurement did not show significant changes from days 14-28 in either tumor-bearing or control animals. We propose that increases in respiratory rate (1.3-1.5 X) can be used to provide an objective benchmark to signal the need for increased clinical observations or euthanasia. Adoption of this novel humane endpoint criterion would allow investigators time to collect tissue samples prior to spontaneous morbidity or death and significantly reduce the distress of mice in the terminal stages of these metastatic lung tumor models.
Asunto(s)
Neoplasias Pulmonares , Frecuencia Respiratoria , Animales , Temperatura Corporal , Modelos Animales de Enfermedad , RatonesRESUMEN
BACKGROUND: Fructose is an abundant source of carbon and energy for cells to use for metabolism, but only certain cell types use fructose to proliferate. Tumor cells that acquire the ability to metabolize fructose have a fitness advantage over their neighboring cells, but the proteins that mediate fructose metabolism in this context are unknown. Here, we investigated the determinants of fructose-mediated cell proliferation. METHODS: Live cell imaging and crystal violet assays were used to characterize the ability of several cell lines (RKO, H508, HepG2, Huh7, HEK293T (293T), A172, U118-MG, U87, MCF-7, MDA-MB-468, PC3, DLD1 HCT116, and 22RV1) to proliferate in fructose (i.e., the fructolytic ability). Fructose metabolism gene expression was determined by RT-qPCR and western blot for each cell line. A positive selection approach was used to "train" non-fructolytic PC3 cells to utilize fructose for proliferation. RNA-seq was performed on parental and trained PC3 cells to find key transcripts associated with fructolytic ability. A CRISPR-cas9 plasmid containing KHK-specific sgRNA was transfected in 293T cells to generate KHK-/- cells. Lentiviral transduction was used to overexpress empty vector, KHK, or GLUT5 in cells. Metabolic profiling was done with seahorse metabolic flux analysis as well as LC/MS metabolomics. Cell Titer Glo was used to determine cell sensitivity to 2-deoxyglucose in media containing either fructose or glucose. RESULTS: We found that neither the tissue of origin nor expression level of any single gene related to fructose catabolism determine the fructolytic ability. However, cells cultured chronically in fructose can develop fructolytic ability. SLC2A5, encoding the fructose transporter, GLUT5, was specifically upregulated in these cells. Overexpression of GLUT5 in non-fructolytic cells enabled growth in fructose-containing media across cells of different origins. GLUT5 permitted fructose to flux through glycolysis using hexokinase (HK) and not ketohexokinase (KHK). CONCLUSIONS: We show that GLUT5 is a robust and generalizable driver of fructose-dependent cell proliferation. This indicates that fructose uptake is the limiting factor for fructose-mediated cell proliferation. We further demonstrate that cellular proliferation with fructose is independent of KHK.
RESUMEN
Excessive consumption of beverages sweetened with high-fructose corn syrup (HFCS) is associated with obesity and with an increased risk of colorectal cancer. Whether HFCS contributes directly to tumorigenesis is unclear. We investigated the effects of daily oral administration of HFCS in adenomatous polyposis coli (APC) mutant mice, which are predisposed to develop intestinal tumors. The HFCS-treated mice showed a substantial increase in tumor size and tumor grade in the absence of obesity and metabolic syndrome. HFCS increased the concentrations of fructose and glucose in the intestinal lumen and serum, respectively, and the tumors transported both sugars. Within the tumors, fructose was converted to fructose-1-phosphate, leading to activation of glycolysis and increased synthesis of fatty acids that support tumor growth. These mouse studies support the hypothesis that the combination of dietary glucose and fructose, even at a moderate dose, can enhance tumorigenesis.
Asunto(s)
Carcinogénesis/patología , Dieta/efectos adversos , Jarabe de Maíz Alto en Fructosa/efectos adversos , Neoplasias Intestinales/patología , Carga Tumoral , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Jarabe de Maíz Alto en Fructosa/administración & dosificación , Ratones , Ratones Mutantes , Clasificación del TumorRESUMEN
Mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase and that forms two multiprotein complexes known as the mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTOR regulates cell growth, proliferation and survival. mTORC1 is composed of the mTOR catalytic subunit and three associated proteins: raptor, mLST8/GßL and PRAS40. mTORC2 contains mTOR, rictor, mLST8/GßL, mSin1, and protor. Here, we discuss mTOR as a promising anti-ischemic agent. It is believed that mTORC2 lies down-stream of Akt and acts as a direct activator of Akt. The different functions of mTOR can be explained by the existence of two distinct mTOR complexes containing unique interacting proteins. The loss of TSC2, which is upstream of mTOR, activates S6K1, promotes cell growth and survival, activates mTOR kinase activities, inhibits mTORC1 and mTORC2 via mTOR inhibitors, and suppresses S6K1 and Akt. Although mTOR signaling pathways are often activated in human diseases, such as cancer, mTOR signaling pathways are deactivated in ischemic diseases. From Drosophila to humans, mTOR is necessary for Ser473 phosphorylation of Akt, and the regulation of Akt-mTOR signaling pathways may have a potential role in ischemic disease. This review evaluates the potential functions of mTOR in ischemic diseases. A novel mTOR-interacting protein deregulates over-expression in ischemic disease, representing a new mechanism for controlling mTOR signaling pathways and potential therapeutic strategies for ischemic diseases.
Asunto(s)
Isquemia/enzimología , Isquemia/patología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Humanos , Transducción de SeñalRESUMEN
We previously reported that tumor necrosis factor-alpha (TNF-alpha) and Fas receptor induce acute cellular injury, tissue damage, and motor and cognitive deficits after controlled cortical impact (CCI) in mice (Bermpohl et al. 2007 ); however, the TNF receptors (TNFR) involved are unknown. Using a CCI model and novel mutant mice deficient in TNFR1/Fas, TNFR2/Fas, or TNFR1/TNFR2/Fas, we tested the hypothesis that the combination of TNFR2/Fas is protective, whereas TNFR1/Fas is detrimental after CCI. Uninjured knockout (KO) mice showed no differences in baseline physiological variables or motor or cognitive function. Following CCI, mice deficient in TNFR2/Fas had worse post-injury motor and Morris water maze (MWM) performance than wild-type (WT) mice (p < 0.05 group effect for wire grip score and MWM performance by repeated measures ANOVA). No differences in motor or cognitive outcome were observed in TNFR1/Fas KO, or in TNFR2 or TNFR1 single KO mice, versus WT mice. Additionally, no differences in propidium iodide (PI)-positive cells (at 6 h) or lesion size (at 14 days) were observed between WT and TNFR1/Fas or TNFR2/Fas KO mice. Somewhat surprisingly, mice deficient in TNFR1/TNFR2/Fas also had PI-positive cells, lesion size, and motor and MWM deficits similar to those of WT mice. These data suggest a protective role for TNFR2/Fas in the pathogenesis of TBI. Further studies are needed to determine whether direct or indirect effects of TNFR1 deletion in TNFR2/Fas KO mice mediate improved functional outcome in TNFR1/TNFR2/Fas KO mice after CCI.
Asunto(s)
Lesiones Encefálicas/genética , Traumatismos Cerrados de la Cabeza/genética , Receptores del Factor de Necrosis Tumoral/genética , Recuperación de la Función/genética , Análisis de Varianza , Animales , Lesiones Encefálicas/fisiopatología , Recuento de Células , Genotipo , Traumatismos Cerrados de la Cabeza/fisiopatología , Ratones , Ratones Noqueados , Actividad Motora/genética , Conducta Espacial , Resultado del TratamientoRESUMEN
To develop a vaccine to block the transmission of vivax malaria, the gene encoding the ookinete surface protein Pvs25 was cloned from a Korean malaria patient. The Pvs25 gene was 660 bp long, encoding 219 amino acids. It was subcloned into the expression vector pQE30 and expressed in Escherichia coli. The expressed recombinant protein, named rPvs25, showed a molecular mass of approximately 25 kDa by SDS-PAGE analysis. An anti-rPvs25 monoclonal antibody produced in BALB/c mice was able to inhibit sporozoite development in the mosquito Anopheles sinensis, which is known as the malaria transmission vector in the Republic of Korea. In addition, rPvs25 produced a relatively high antibody titer in BALB/c mice that lasted for more than 6 months. Based on these results, we suggest that recombinant Pvs25 could be a useful antigen in the development of a vaccine to prevent local malaria transmission in the Republic of Korea.
Asunto(s)
Anopheles/parasitología , Anticuerpos Monoclonales/inmunología , Anticuerpos Antiprotozoarios/inmunología , Vectores de Enfermedades , Esporozoítos/inmunología , Animales , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Antígenos de Superficie/química , Antígenos de Superficie/genética , Antígenos de Superficie/inmunología , Clonación Molecular , Escherichia coli/genética , Expresión Génica , Humanos , Vacunas contra la Malaria/química , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Malaria Vivax/parasitología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , República de Corea , Análisis de Secuencia de ADN , Esporozoítos/crecimiento & desarrolloRESUMEN
Recent studies suggest that dipyridamole (DP) may exert stroke protective effects beyond platelet inhibition. The purpose of this study is to determine whether statin and DP could enhance stroke protection through nitric oxide (NO)-dependent vascular effects. Mice were pretreated with DP (10 to 60 mg/kg, q 12 h, 3 days) alone or in combination with a statin (simvastatin; 0.1 to 20 mg/kg per day, 14 days) before transient intraluminal middle cerebral artery occlusion. Although simvastatin (1 mg/kg per day, 14 days) increased endothelial NO synthase (eNOS) activity by 25% and DP (30 mg/kg, q12 h, 3 days) increased aortic cGMP levels by 55%, neither statin nor DP alone, at these subtherapeutic doses, increased absolute cerebral blood flow (CBF) or conferred stroke protection. However, the combination of subtherapeutic doses of simvastatin and DP increased CBF by 50%, decreased stroke volume by 54%, and improved neurologic motor deficits, all of which were absent in eNOS-deficient mice. In contrast, treatment with aspirin (10 mg/kg per day, 3 days) did not augment the neuroprotective effects of DP and/or simvastatin. These findings indicate that statin and DP exert additive NO-dependent vascular effects and suggest that the combination of statin and DP has greater benefits in stroke protection than statin alone through vascular protection.