Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Cell Biol ; 99(1): 73-80, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32402212

RESUMEN

Primary infection with Mycobacterium tuberculosis (Mtb) results in the formation of a densely packed granulomatous response that essentially limits the entry and efficacy of immune effector cells. Furthermore, the physical nature of the granuloma does not readily permit the entry of therapeutic agents to sites where organisms reside. The Mtb cell wall mycolic acid, trehalose 6,6'-dimycolate (TDM), is a physiologically relevant molecule for modelling macrophage-mediated events during the establishment of the tuberculosis-induced granuloma pathogenesis. At present, there are no treatments for tuberculosis that focus on modulating the host's immune responses. Previous studies showed that lactoferrin (LF), a natural iron-binding protein proven to modulate inflammation, can ameliorate the cohesiveness of granuloma. This led to a series of studies that further examined the effects of recombinant human LF (rHLF) on the histological progression of TDM-induced pathology. Treatment with rHLF demonstrated significant reduction in size and number of inflammatory foci following injections of TDM, together with reduced levels pulmonary pro-inflammatory cytokines TNF-α and IL-1ß. LF facilitated greater penetration of fluoroquinolone to the sites of pathology. Mice treated with TDM alone demonstrated exclusion of ofloxacin to regions of inflammatory response, whereas the animals treated with rHLF demonstrated increased penetration to inflammatory foci. Finally, recent findings support the hypothesis that this mycobacterial mycolic acid can specifically recruit M1-like polarized macrophages; rHLF treatment was shown to limit the level of this M1-like phenotypic recruitment, corresponding highly with decreased inflammatory response.


Asunto(s)
Granuloma/metabolismo , Inflamación/metabolismo , Lactoferrina/metabolismo , Mycobacterium/metabolismo , Animales , Factores Cordón , Femenino , Fluoroquinolonas , Granuloma/inducido químicamente , Humanos , Lactoferrina/química , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
2.
Am J Pathol ; 190(2): 286-294, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31734231

RESUMEN

Murine models of Mycobacterium tuberculosis (Mtb) infection demonstrate progression of M1-like (proinflammatory) and M2-like (anti-inflammatory) macrophage morphology following primary granuloma formation. The Mtb cell wall cording factor, trehalose 6,6'-dimycolate (TDM), is a physiologically relevant and useful molecule for modeling early macrophage-mediated events during establishment of the tuberculosis-induced granuloma pathogenesis. Here, it is shown that TDM is a major driver of the early M1-like macrophage response as seen during initiation of the granulomas of primary pathology. Proinflammatory cytokines tumor necrosis factor-α, IL-1ß, IL-6, and IL-12p40 are produced in lung tissue after administration of TDM to mice. Furthermore, CD11b+CD45+ macrophages with a high surface expression of the M1-like markers CD38 and CD86 were found present in regions of pathology in lungs of mice at 7 days post-TDM introduction. Conversely, only low phenotypic marker expression of M2-like markers CD206 and EGR-2 were present on macrophages. These findings suggest that TDM plays a role in establishment of the M1-like shift in the microenvironment during primary tuberculosis.


Asunto(s)
Adyuvantes Inmunológicos/toxicidad , Factores Cordón/toxicidad , Granuloma/patología , Mediadores de Inflamación/metabolismo , Macrófagos/patología , Mycobacterium/metabolismo , Neumonía/patología , Animales , Femenino , Granuloma/inducido químicamente , Granuloma/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Neumonía/inducido químicamente , Neumonía/metabolismo
3.
Am J Respir Cell Mol Biol ; 56(5): 637-647, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28135421

RESUMEN

Although it is accepted that the environment within the granuloma profoundly affects Mycobacterium tuberculosis (Mtb) and infection outcome, our ability to understand Mtb gene expression in these niches has been limited. We determined intragranulomatous gene expression in human-like lung lesions derived from nonhuman primates with both active tuberculosis (ATB) and latent TB infection (LTBI). We employed a non-laser-based approach to microdissect individual lung lesions and interrogate the global transcriptome of Mtb within granulomas. Mtb genes expressed in classical granulomas with central, caseous necrosis, as well as within the caseum itself, were identified and compared with other Mtb lesions in animals with ATB (n = 7) or LTBI (n = 7). Results were validated using both an oligonucleotide approach and RT-PCR on macaque samples and by using human TB samples. We detected approximately 2,900 and 1,850 statistically significant genes in ATB and LTBI lesions, respectively (linear models for microarray analysis, Bonferroni corrected, P < 0.05). Of these genes, the expression of approximately 1,300 (ATB) and 900 (LTBI) was positively induced. We identified the induction of key regulons and compared our results to genes previously determined to be required for Mtb growth. Our results indicate pathways that Mtb uses to ensure its survival in a highly stressful environment in vivo. A large number of genes is commonly expressed in granulomas with ATB and LTBI. In addition, the enhanced expression of the dormancy survival regulon was a key feature of lesions in animals with LTBI, stressing its importance in the persistence of Mtb during the chronic phase of infection.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Granuloma/microbiología , Viabilidad Microbiana/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiología , Anaerobiosis , Animales , Perfilación de la Expresión Génica , Granuloma/patología , Pulmón/microbiología , Pulmón/patología , Macaca , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulón/genética , Reproducibilidad de los Resultados , Transcriptoma/genética , Tuberculosis/genética , Tuberculosis/microbiología , Tuberculosis/patología
4.
Biochem Cell Biol ; 95(1): 148-154, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28165282

RESUMEN

Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 µg·mouse-1. At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 µL)-1·mouse-1) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.


Asunto(s)
Factores Cordón/efectos adversos , Granuloma/prevención & control , Lactoferrina/administración & dosificación , Enfermedades Pulmonares/prevención & control , Proteínas Recombinantes/administración & dosificación , Tuberculosis/prevención & control , Administración Oral , Animales , Factores Cordón/metabolismo , Citocinas/metabolismo , Femenino , Granuloma/inducido químicamente , Granuloma/metabolismo , Granuloma/patología , Humanos , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/metabolismo , Tuberculosis/metabolismo , Tuberculosis/patología
5.
Am J Pathol ; 186(5): 1221-33, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26968340

RESUMEN

Tuberculosis (TB) remains a global health concern. Trehalose 6'6-dimycolate (TDM) activates innate inflammation and likely also stimulates chronic inflammation observed during disease progression. Noninfectious models using purified TDM oil/water emulsions elicit pathologic findings observed in patients with TB. We introduce a new TDM model that promotes inflammatory lung pathologic findings and vascular occlusion and hemorrhage. C57BL/6 and BALB/c mice were injected with 10 µg of i.p. TDM in light mineral oil (TDM-IP). At day 7, another injection of 10 µg of i.v. TDM in oil/water emulsion was given (TDM-IV). The i.p./i.v. TDM (TDM-IVIP) group was compared with mice injected once with i.v. or i.p. TDM. The responses to TDM-IP, TDM-IV, or TDM-IPIV were consistent between mouse strains. Mice that received TDM-IV and TDM-IPIV had inflammatory pathologic findings with increases in inflammatory and T-cell cytokines, and the TDM-IPIV group had further enhancement of IL-10 and granulocyte-macrophage colony-stimulating factor. The TDM-IPIV group had increased CD4(+) T cells in lung tissue, significantly increased coagulation, decreased clot formation time, and increased maximum clot firmness. Masson's trichrome staining revealed increased deposition of collagen in the occluded vasculature. TDM-IPIV promotes a hypercoagulopathy state, independent of inflammation. This new model argues that TDM is sufficient to generate the hypercoagulopathy observed in patients with TB.


Asunto(s)
Adyuvantes Inmunológicos/toxicidad , Factores Cordón/toxicidad , Trombofilia/inducido químicamente , Animales , Antígenos CD/metabolismo , Colágeno/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Inmunidad Innata/efectos de los fármacos , Pulmón/irrigación sanguínea , Pulmón/inmunología , Linfocitos/inmunología , Macrófagos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mycobacterium tuberculosis , Neutrófilos/inmunología , Neumonía/inducido químicamente , Neumonía/inmunología , Neumonía/patología , Enfermedad Veno-Oclusiva Pulmonar/inducido químicamente , Enfermedad Veno-Oclusiva Pulmonar/inmunología , Enfermedad Veno-Oclusiva Pulmonar/patología , Tromboelastografía/métodos , Trombofilia/inmunología , Trombofilia/patología
6.
Microb Pathog ; 99: 209-219, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27569531

RESUMEN

Pneumococcal surface protein A (PspA) is the only pneumococcal surface protein known to strongly bind lactoferrin on the bacterial surface. In the absence of PspA Streptococcus pneumoniae becomes more susceptible to killing by human apolactoferrin (apo-hLf), the iron-free form of lactoferrin. In the present study we examined diverse strains of S. pneumoniae that differed by 2 logs in their susceptibility to apo-hLf. Among these strains, the amount of apo-hLf that bound to cell surface PspA correlated directly with the resistance of the strain to killing by apo-hLf. Moreover examination of different pspA alleles on shared genetic backgrounds revealed that those PspAs that bound more lactoferrin conferred greater resistance to killing by apo-hLf. The effects of capsule on killing of pneumococci by apo-hLf were generally small, but on one genetic background, however, the lack of capsule was associated with 4-times as much apo-hLf binding and 30-times more resistance to killing by apo-hLf. Overall these finding strongly support the hypothesis that most of the variation in the ability of apo-hLf is dependent on the variation in the binding of apo-hLf to surface PspA and this binding is dependent on variation in PspA as well as variation in capsule which may enhance killing by reducing the binding of apo-hLf to PspA.


Asunto(s)
Alelos , Antibacterianos/metabolismo , Apoproteínas/metabolismo , Cápsulas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Lactoferrina/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Streptococcus pneumoniae/efectos de los fármacos , Proteínas Bacterianas/genética , Variación Genética , Humanos , Unión Proteica , Streptococcus pneumoniae/genética
7.
Int J Immunopathol Pharmacol ; 28(4): 452-68, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26315722

RESUMEN

Lactoferrin (LF), an iron binding protein with immune modulatory activities, has adjuvant activity to enhance vaccine efficacy. Tuberculosis (TB) is a pulmonary disease caused by the pathogen Mycobacterium tuberculosis (MTB). Progressive TB disease is clinically defined by damaging pulmonary pathology, a result of inflammation due to immune reactivity. The current vaccine for TB, an attenuated strain of Mycobacterium bovis, Bacillus Calmette Guerin (BCG), has only limited efficacy to prevent adult pulmonary TB. This study examines a Chinese hamster ovary (CHO) expressed recombinant human LF (rHLF) to boost efficacy of the BCG vaccine and delay early pathology post infectious challenge. C57BL/6 mice were immunized with BCG, or BCG admixed with either rHLF or bovine LF (bLF; internal control), or remained unvaccinated. Mice were then aerosol challenged with Erdman MTB. All vaccinated mice demonstrated decreased organ bacterial load up to 19 weeks post infection compared with non-vaccinated controls. Furthermore, mice receiving bLF or rHLF supplemented BCG vaccines showed a modest decrease in lung pathology developed over time, compared to the BCG vaccine alone. While mice vaccinated with BCG/rHLF demonstrated increased general lung inflammation at day 7, it occurred without noticeable increase in pro-inflammatory cytokines. At later times, decreased pathology in the rHLF groups correlated with decreased inflammatory cytokines. Splenic recall to BCG antigens showed BCG/rHLF vaccination increased production of IFN-γ, IL-6, and GM-CSF compared to naïve, BCG, and BCG/bLF groups. Analysis of T cell stimulating functions of bone marrow derived macrophages and dendritic cells treated with BCG/bLF or BCG/rHLF showed decreases in IL-10 production when co-cultured with sensitized CD4 and CD8 T cells, compared to those cultured with macrophages/dendritic cells treated with BCG without LF. These results indicate that addition of rHLF to the BCG vaccine can modulate development of host pathology early post infectious challenge, most likely through host immune regulation affecting hypersensitive responses.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Vacuna BCG/inmunología , Lactoferrina/biosíntesis , Proteínas Recombinantes/biosíntesis , Animales , Células CHO , Cricetulus , Citocinas/fisiología , Femenino , Lactoferrina/farmacología , Pulmón/inmunología , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/farmacología , Vacunación
8.
Brain Behav Immun ; 39: 23-32, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24462949

RESUMEN

Recent data indicates that dysregulation of the immune system occurs and persists during spaceflight. Impairment of immunity, especially in conjunction with elevated radiation exposure and limited clinical care, may increase certain health risks during exploration-class deep space missions (i.e. to an asteroid or Mars). Research must thoroughly characterize immune dysregulation in astronauts to enable development of a monitoring strategy and validate any necessary countermeasures. Although the International Space Station affords an excellent platform for on-orbit research, access may be constrained by technical, logistical vehicle or funding limitations. Therefore, terrestrial spaceflight analogs will continue to serve as lower cost, easier access platforms to enable basic human physiology studies. Analog work can triage potential in-flight experiments and thus result in more focused on-orbit studies, enhancing overall research efficiency. Terrestrial space analogs generally replicate some of the physiological or psychological stress responses associated with spaceflight. These include the use of human test subjects in a laboratory setting (i.e. exercise, bed rest, confinement, circadian misalignment) and human remote deployment analogs (Antarctica winterover, undersea, etc.) that incorporate confinement, isolation, extreme environment, physiological mission stress and disrupted circadian rhythms. While bed rest has been used to examine the effects of physical deconditioning, radiation and microgravity may only be simulated in animal or microgravity cell culture (clinorotation) analogs. This article will characterize the array of terrestrial analogs for spaceflight immune dysregulation, the current evidence base for each, and interpret the analog catalog in the context of acute and chronic stress.


Asunto(s)
Adaptación Fisiológica/inmunología , Vuelo Espacial , Simulación del Espacio , Estrés Fisiológico/inmunología , Estrés Psicológico/inmunología , Enfermedad Crónica , Humanos , Sistema Inmunológico/inmunología
9.
J Clin Lab Anal ; 28(1): 16-20, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24375780

RESUMEN

BACKGROUND: Oleander interferes with serum digoxin measurements using various immunoassays. The potential interference of oleander and its active ingredient, oleandrin, with a relatively new homogenous sequential chemiluminescent digoxin assay based on luminescent oxygen channeling technology (LOCI digoxin assay, Siemens Diagnostics) has not been previously reported. METHODS: Aliquots of a digoxin-free serum pool were supplemented with increasing concentrations of oleandrin, or with oleander extract, followed by measuring the apparent digoxin concentrations using the LOCI digoxin assay using Vista 1500 analyzer. Mice were fed oleandrin or oleander extract, and their blood digoxin levels at 1 and 2 h were measured with the LOCI digoxin assay. In addition, two digoxin serum pools were prepared by combining sera of patients receiving digoxin; aliquots of both pools were supplemented with oleandrin or oleander extract and digoxin concentrations were again measured. Attempts to overcome this interference were made by measuring free digoxin concentration using a third digoxin pool. RESULTS: Significant apparent digoxin concentrations were observed after supplementing aliquots of the drug-free serum pool with oleandrin or oleander extract. Mice fed with oleandrin or oleander extract also showed apparent digoxin levels 1 and 2 h after feeding. Digoxin values were also falsely lower or elevated (bidirectional interference) when aliquots of digoxin serum pools were further supplemented with oleandrin or oleander extract depending on concentration; this interference was not eliminated by free digoxin monitoring. CONCLUSIONS: Oleandrin interferes with LOCI digoxin assay.


Asunto(s)
Cardenólidos/sangre , Digoxina/sangre , Mediciones Luminiscentes/instrumentación , Mediciones Luminiscentes/métodos , Nerium/química , Extractos Vegetales/sangre , Animales , Humanos , Ratones
10.
Neuroimmunomodulation ; 18(4): 212-25, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21389736

RESUMEN

Granulomatous structures are highly dynamic during active mycobacterial infection, with accompanying responsive inflammation contributing to modulation of pathology throughout the course of disease. The heightened inflammatory response coinciding with initiation and maintenance of newly developing granulomatous structures must be limited to avoid excessive damage to bystander tissue. Modulating the cellular bioavailability of glucocorticoids by local regulation of 11ßHSD enzymes within responding tissue and parenchyma would allow controlled inflammatory response during infection. Mycobacterial glycolipid trehalose 6,6'-dimycolate was used to induce strong pulmonary granulomatous inflammation immunopathology. Pulmonary corticosterone was significantly increased at days 3 and 5 after administration. An inverse relationship of 11ßHSD1 and 11ßHSD2 message correlated with pathology development. Immunohistochemical analysis also demonstrated that 11ßHSD2 is expressed in proximity to granulomatous lesions. A role for pro-inflammatory IL-6 cytokine in regulation of converting enzymes to control the granulomatous response was confirmed using gene-disrupted IL-6-/- mice. A model is proposed linking IL-6 to endocrine-derived factors which allows modification of active corticosterone into inert 11-dehydrocorticosterone at the site of granuloma formation to limit excessive parenchymal damage.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/metabolismo , Granuloma del Sistema Respiratorio/enzimología , Granuloma del Sistema Respiratorio/patología , Interleucina-6/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/inmunología , Animales , Factores Cordón/toxicidad , Corticosterona/análisis , Corticosterona/metabolismo , Citocinas/biosíntesis , Citocinas/inmunología , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Expresión Génica , Regulación de la Expresión Génica/inmunología , Granuloma del Sistema Respiratorio/inmunología , Inmunohistoquímica , Interleucina-6/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/análisis , Radioinmunoensayo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Ther Drug Monit ; 33(5): 644-8, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21860344

RESUMEN

BACKGROUND: Chan Su, Asian ginseng, Siberian ginseng, and American ginseng are known to interfere with various digoxin immunoassays. Recently, a homogeneous sequential chemiluminescent assay for digoxin based on the luminescent oxygen channeling technology (LOCI digoxin) for application on the Dimension and Vista platform has been introduced into the market. The effects of interference by Chan Su and various ginsengs on this new immunoassay have not yet been reported. MATERIALS AND METHODS: Aliquots of a drug-free serum pool were supplemented with Chan Su, Asian ginseng, Siberian ginseng, and American ginseng representing the expected in vivo concentrations after normal usage and cases of overdose. Serum digoxin concentrations were measured using the LOCI digoxin assay on the Vista 1500 analyzer. We also prepared 3 digoxin pools from patients receiving digoxin. Two digoxin pools were supplemented with these traditional medicines to investigate their effect on serum digoxin measurements. Mice were fed Chan Su extract to determine the potential of in vivo derived interfering factors. The possibility of eliminating interference of Chan Su on serum digoxin measurement was also investigated, by measuring free digoxin concentration after supplementing aliquots of the third digoxin pool with various amounts of Chan Su extract. RESULTS: A clinically significant interference by Chan Su with serum digoxin measurement was observed using the LOCI digoxin assay. The various ginsengs demonstrated negligible effects. In addition, apparent digoxin concentrations were observed in sera of mice after feeding them with Chan Su; the half-life of digoxin-like immunoreactive components was approximately 1 hour. Moreover, serum digoxin concentrations were significantly elevated in the presence of Chan Su, whereas the various ginsengs exhibited no effect. Monitoring free digoxin can only partly eliminate the interference of Chan Su in serum digoxin measurement. CONCLUSIONS: Chan Su interferes with serum digoxin measurement using the LOCI Digoxin, whereas the ginsengs demonstrated no measurable interference at clinically relevant concentrations.


Asunto(s)
Bufanólidos/química , Digoxina/sangre , Eleutherococcus/química , Oxígeno/química , Panax/química , Extractos Vegetales/sangre , Animales , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos , Humanos , Inmunoensayo/métodos , Mediciones Luminiscentes/métodos , Ratones , Extractos Vegetales/química
12.
Ann Clin Lab Sci ; 51(3): 359-367, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34162566

RESUMEN

OBJECTIVE: The aim of this investigation was to evaluate the property of bovine lactoferrin (LF) in the generation of delayed type hypersensitivity (DTH) as an oral adjuvant during immunization with ovalbumin (OVA) and BCG. METHODS: LF admixed with OVA or BCG was used for immunization of CBA or C57BL/6 mice when given via oral or subcutaneous routes. Elicited DTH response was measured post immunization. Inhibition studies using mannose or galactose were accomplished by gavage prior to oral administration of antigens. LF was also examined for effects on BCG uptake by bone marrow derived macrophages (BMM). RESULTS: LF at doses of 1.0 mg and 10.0 mg, admixed with OVA (10.0 mg), significantly enhanced the antigen-specific DTH reaction. The stimulatory effects of LF were inhibited by the oral pretreatment of mice with 50.0 mg of mannose but not galactose. LF also enhanced the DTH reaction to orally administered BCG. LF enhanced uptake of BCG by BMM in a dose-dependent manner. CONCLUSION: LF was able to augment development of DTH when orally administered with OVA or BCG antigens. Inhibition studies suggest the involvement of the receptor with an affinity to mannose in mediation of the adjuvant effect. LF augmentation of the DTH response was partially effective when given in advance of oral delivery of the antigen; this effect could also be saturated by mannose. BCG studies provide preliminary evidence for LF in the potential augmentation of oral vaccination to prevent mycobacterial infection. In vitro experiments provide evidence that LF plays a role in modulation of antigen presenting cell activation.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Antígenos/administración & dosificación , Hipersensibilidad Tardía/patología , Lactoferrina/administración & dosificación , Macrófagos/inmunología , Mycobacterium bovis/inmunología , Ovalbúmina/administración & dosificación , Administración Oral , Animales , Antígenos/inmunología , Hipersensibilidad Tardía/etiología , Lactoferrina/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ovalbúmina/inmunología
13.
NPJ Vaccines ; 6(1): 114, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34497271

RESUMEN

The development of suitable safe adjuvants to enhance appropriate antigen-driven immune responses remains a challenge. Here we describe the adjuvant properties of a small molecule activator of the integrins αLß2 and α4ß1, named 7HP349, which can be safely delivered systemically independent of antigen. 7HP349 directly activates integrin cell adhesion receptors crucial for the generation of an immune response. When delivered systemically in a model of Chagas disease following immunization with a DNA subunit vaccine encoding candidate T. cruzi antigens, TcG2 and TcG4, 7HP349 enhanced the vaccine efficacy in both prophylactic and therapeutic settings. In a prophylactic setting, mice immunized with 7HP349 adjuvanted vaccine exhibited significantly improved control of acute parasite burden in cardiac and skeletal muscle as compared to vaccination alone. When administered with vaccine therapeutically, parasite burden was again decreased, with the greatest adjuvant effect of 7HP349 being noted in skeletal muscle. In both settings, adjuvantation with 7HP349 was effective in decreasing pathological inflammatory infiltrate, improving the integrity of tissue, and controlling tissue fibrosis in the heart and skeletal muscle of acutely and chronically infected Chagas mice. The positive effects correlated with increased splenic frequencies of CD8+T effector cells and an increase in the production of IFN-γ and cytolytic molecules (perforin and granzyme) by the CD4+ and CD8+ effector and central memory subsets in response to challenge infection. This demonstrates that 7HP349 can serve as a systemically administered adjuvant to enhance T cell-mediated immune responses to vaccines. This approach could be applied to numerous vaccines with no reformulation of existing stockpiles.

14.
Int Immunol ; 21(10): 1185-97, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19692539

RESUMEN

Lactoferrin, an 80-kDa iron-binding protein with immune modulating properties, is a unique adjuvant component able to enhance efficacy of the existing Mycobacterium bovis Bacillus Calmette Guerin (BCG) vaccine to protect against murine model of tuberculosis. Although identified as having effects on macrophage presentation events, lactoferrin's capability to modulate dendritic cells (DCs) function when loaded with BCG antigens has not been previously recognized. In this study, the potential of lactoferrin to modulate surface expression of MHC II, CD80, CD86 and CD40 from bone marrow-derived dendritic cells (BMDCs) was examined. Generally, lactoferrin decreased pro-inflammatory cytokines [tumor necrosis factor (TNF)-alpha, IL-6 and IL-12p40] and chemokines [macrophage inflammatory protein (MIP)-1alpha and MIP-2] and increased regulatory cytokine, transforming growth factor-beta1 and a T-cell chemotatic factor, monocyte chemotactic protein-1, from uninfected or BCG-infected BMDCs. Culturing BCG-infected BMDCs with lactoferrin also enhanced their ability to respond to IFN-gamma activation through up-regulation of maturation markers: MHC I, MHC II and the ratio of CD86:CD80 surface expression. Furthermore, lactoferrin-exposed BCG-infected DCs increased stimulation of BCG-specific CD3(+)CD4(+) splenocytes, as defined by increasing IFN-gamma production. Finally, BCG-/lactoferrin-vaccinated mice possessed an increased pool of BCG antigen-specific IFN-gamma producing CD3(+)CD4(+)CD62L(-) splenocytes. These studies suggest a mechanism in which lactoferrin may exert adjuvant activity by enhancing DC function to promote generation of antigen-specific T cells.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Vacuna BCG/inmunología , Células Dendríticas/inmunología , Lactoferrina/farmacología , Tuberculosis/prevención & control , Animales , Antígeno B7-1/efectos de los fármacos , Antígeno B7-1/inmunología , Antígeno B7-1/metabolismo , Antígeno B7-2/efectos de los fármacos , Antígeno B7-2/inmunología , Antígeno B7-2/metabolismo , Vacuna BCG/administración & dosificación , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Antígenos CD40/inmunología , Antígenos CD40/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Citocinas/efectos de los fármacos , Citocinas/inmunología , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Antígenos de Histocompatibilidad Clase II/efectos de los fármacos , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Ratones , Ratones Endogámicos C57BL , Mycobacterium bovis/inmunología
15.
Ann Clin Lab Sci ; 50(4): 429-438, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32826237

RESUMEN

Post-primary tuberculosis (TB) disease is characterized by paucibacillary necrosis of the early lesion, tuberculous pneumonia, in the adult human lung. The mechanism is speculated to be a strong localized delayed type hypersensitive response (DTH). However, up to this date, no one has been able to identify the source of the large accumulation of MTB antigens required for the DTH response. Although it is known and accepted that the pathogen, Mycobacterium tuberculosis (MTB), significantly affects macrophage function and activity, few studies have focused on macrophages at the site of the early lesion of developing post-primary MTB in human lungs. In vitro studies have examined the effect of MTB on skewing the macrophage phenotype, specifically the dynamic of the M1 and M2 differentiation. Additionally, it is also well documented that MTB infection induces macrophages to become foamy, accumulating host, and potentially MTB, lipids in the cytoplasm. The foamy macrophage is necessary for prolonging MTB survival in the infected lung. Using autopsy derived lung samples from untreated TB diseased individuals, this report, by applying morphoproteomics, demonstrates that the alveolar macrophages present in the early lesion of TB are primarily of the M2 phenotype. The M2 foamy alveolar macrophages (FAM) are also loaded with MTB antigens by immunohistochemistry and are paucibacillary. Moreover, the M2 alveolar macrophages predominately express PD-L1, leading to suppression of PD-1+ lymphocytes and host immunosurveillance. These morphoproteomic analyses indicate that early lesion of MTB in the adult human lung leads to a skewed M2 foamy alveolar macrophage phenotype that creates a protective microenvironment that accumulates high concentrations of MTB antigens, which when released can lead to necrosis and eventual cavitation.


Asunto(s)
Macrófagos Alveolares/metabolismo , Tuberculosis/inmunología , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Humanos , Pulmón/patología , Macrófagos/microbiología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/microbiología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Necrosis/patología , Fenotipo , Tuberculosis Pulmonar/inmunología
16.
Tuberculosis (Edinb) ; 116S: S118-S122, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31072690

RESUMEN

Mycobacterium tuberculosis (MTB) is a pathogen that infects and kills millions yearly. The mycobacterium's cell wall glycolipid trehalose 6,6'-dimycolate (TDM) has been used historically to model MTB induced inflammation and granuloma formation. Alterations to the model can significantly influence the induced pathology. One such method incorporates intraperitoneal pre-exposure, after which the intravenous injection of TDM generates pathological damage effectively mimicking the hypercoagulation, thrombus formation, and tissue remodeling apparent in lungs of infected individuals. The purpose of these experiments is to examine the histological inflammation involved in the TDM mouse model that induces development of the hemorrhagic response. TDM induced lungs of C57BL/6 mice to undergo granulomatous inflammation. Further histological examination of the peak response demonstrated tissue remodeling consistent with hypercoagulation. The observed vascular occlusion indicates that obstruction likely occurs due to subendothelial localized activity leading to restriction of blood vessel lumens. Trichrome staining revealed that associated damage in the hypercoagulation model is consistent with intra endothelial cell accumulation of innate cells, bordered by collagen deposition in the underlying parenchyma. Overall, the hypercoagulation model represents a comparative pathological instrument for understanding mechanisms underlying development of hemorrhage and vascular occlusion seen during MTB infection.


Asunto(s)
Factores Cordón/metabolismo , Endotelio Vascular/patología , Granuloma del Sistema Respiratorio/patología , Pulmón/irrigación sanguínea , Mycobacterium tuberculosis/metabolismo , Neumonía/patología , Tuberculosis Pulmonar/patología , Animales , Coagulación Sanguínea , Modelos Animales de Enfermedad , Endotelio Vascular/microbiología , Femenino , Granuloma del Sistema Respiratorio/sangre , Granuloma del Sistema Respiratorio/inducido químicamente , Granuloma del Sistema Respiratorio/microbiología , Pulmón/microbiología , Ratones Endogámicos C57BL , Neumonía/sangre , Neumonía/inducido químicamente , Neumonía/microbiología , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/inducido químicamente , Tuberculosis Pulmonar/microbiología , Remodelación Vascular
17.
Pathogens ; 7(1)2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29415434

RESUMEN

Primary and post-primary tuberculosis (TB) are different diseases caused by the same organism. Primary TB produces systemic immunity. Post-primary TB produces cavities to support massive proliferation of organisms for transmission of infection to new hosts from a person with sufficient immunity to prevent systemic infection. Post-primary, also known as bronchogenic, TB begins in humans as asymptomatic bronchial spread of obstructive lobular pneumonia, not as expanding granulomas. Most lesions regress spontaneously. However, some undergo caseation necrosis that is coughed out through the necrotic bronchi to form cavities. Caseous pneumonia that is not expelled through the bronchi is retained to become the focus of fibrocaseous disease. No animal reproduces this entire process. However, it appears that many mammals utilize similar mechanisms, but fail to coordinate them as do humans. Understanding this makes it possible to use human tuberculous lung sections to guide manipulation of animals to produce models of particular human lesions. For example, slowly progressive and reactivation TB in mice resemble developing human bronchogenic TB. Similarly, bronchogenic TB and cavities resembling those in humans can be induced by bronchial infection of sensitized rabbits. Granulomas in guinea pigs have characteristics of both primary and post primary TB. Mice can be induced to produce a spectrum of human like caseating granulomas. There is evidence that primates can develop bronchogenic TB. We are optimistic that such models developed by coordinated study of human and animal tissues can be used with modern technologies to finally address long-standing questions about host/parasite relationships in TB, and support development of targeted therapeutics and vaccines.

18.
Artículo en Inglés | MEDLINE | ID: mdl-17507876

RESUMEN

INTRODUCTION: Lactoferrin, an 80-kDa basic N-glycoprotein, has been identified as a potent immune modulator. When used experimentally as an adjuvant in mice, lactoferrin can boost the efficacy of the BCG vaccine to increase delayed type hypersensitive responses and to limit subsequent pathology upon infection with virulent mycobacterium. These studies outline preliminary findings to examine the multiple mechanisms of action of lactoferrin on antigen-presenting cells which would enhance vaccination and bridge the innate and adaptive responses. MATERIAL/METHODS: Bone marrow-derived macrophages (BMMs) and human and murine cells lines were infected with BCG in the presence or absence of bovine lactoferrin. The cells were examined for changes in uptake of BCG post infection and increases in the surface expressions of Class I or Class II molecules by flow cytometric analysis. Infected cultures were collected to examine cytokine production by ELISA. RESULTS: Lactoferrin was found to significantly increase the uptake of BCG organisms during infection of BMMs and human monocyte cell lines. Lactoferrin added to BCG-infected BMMs demonstrated significantly increased surface expression of Class II (I-Ab), but no change in Class I (H-2kb) molecules. In addition, BCG-infected cells incubated in the presence of lactoferrin demonstrated a significant increase in relative IL-12 to IL-10 ratios in a dose-dependent manner. CONCLUSIONS: Overall, lactoferrin was able to alter BCG-infected antigen-presenting cells (APCs) in vitroin a manner consistent with the induction of responses required for successful presentation of antigen to the adaptive arm of the immune response, which would lead to the generation of strong T-helper 1 type immunity.


Asunto(s)
Vacuna BCG/inmunología , Lactoferrina/inmunología , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Animales , Vacuna BCG/farmacología , Células Cultivadas , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Lactoferrina/farmacología , Activación de Linfocitos/inmunología , Macrófagos/efectos de los fármacos
19.
Front Immunol ; 8: 78, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28210262

RESUMEN

In an effort to develop more effective therapy for tuberculosis (TB), research efforts are looking toward host-directed therapy, reprograming the body's natural defenses to better control the infection. While significant progress is being made, the efforts are limited by lack of understanding of the pathology and pathogenesis of adult type TB disease. We have recently published evidence that the developing lesions in human lungs are focal endogenous lipid pneumonia that constitutes a region of local susceptibility in a person with strong systemic immunity. Since most such lesions regress spontaneously, the ability to study them directly with immunohistochemistry provides means to investigate why some progress to clinical disease while others asymptomatically regress. Furthermore, this should enable us to develop more effective host-directed therapies. Morphoproteomics has proven to be an effective means of characterizing protein expression that can be used to identify metabolic pathways, which can lead to more effective therapies. The purpose of this perspective will argue that using morphoproteomics on human TB lung tissue is a particularly promising method to direct selection of host-directed therapeutics.

20.
Tuberculosis (Edinb) ; 101S: S53-S62, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27727130

RESUMEN

Lactoferrin, an iron-binding glycoprotein found in mammalian mucosal secretions and granules of neutrophils, possesses several immune modulatory properties. Published reports indicate that lactoferrin enhances the efficacy of the tuberculosis vaccine, BCG (Bacillus Calmette Guerin), both by increasing macrophage and dendritic cell ability to stimulate receptive T cells and by modulating the inflammatory response. This report is the first to demonstrate the effects of a recombinant human lactoferrin (10 µg/mL) on human PBMC derived CD14+ and CD16+ macrophages stimulated with a strong (LPS, 10 ng/mL) or weaker (BCG, MOI 1:1) stimulator of inflammation. After 3 days culture, LPS and human lactoferrin treated CD14+ cells significantly increased production of IL-10, IL-6, and MCP-1 compared to the LPS only group. In contrast, similarly treated CD16+ macrophages increased production of IL-12p40 and IL-10 and decreased TNF-α. Limited changes were observed in BCG stimulated CD14+ and CD16+ macrophages with and without lactoferrin. Analysis of surface expression of antigen presentation and co-stimulatory molecules demonstrated that CD14+ macrophages, when stimulated with BCG or LPS and cultured with lactoferrin, increased expression of CD86. CD16+ macrophages treated with lactoferrin showed a similar trend of increase in CD86 expression, but only when stimulated with BCG.


Asunto(s)
Vacuna BCG/farmacología , Lactoferrina/farmacología , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Antígeno B7-2/metabolismo , Células Cultivadas , Citocinas/metabolismo , Proteínas Ligadas a GPI/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Fenotipo , Receptores de IgG/metabolismo , Proteínas Recombinantes/farmacología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA