Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS Genet ; 18(6): e1009798, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35675330

RESUMEN

Mutations in the apicobasal polarity gene CRB1 lead to diverse retinal diseases, such as Leber congenital amaurosis, cone-rod dystrophy, retinitis pigmentosa (with and without Coats-like vasculopathy), foveal retinoschisis, macular dystrophy, and pigmented paravenous chorioretinal atrophy. Limited correlation between disease phenotypes and CRB1 alleles, and evidence that patients sharing the same alleles often present with different disease features, suggest that genetic modifiers contribute to clinical variation. Similarly, the retinal phenotype of mice bearing the Crb1 retinal degeneration 8 (rd8) allele varies with genetic background. Here, we initiated a sensitized chemical mutagenesis screen in B6.Cg-Crb1rd8/Pjn, a strain with a mild clinical presentation, to identify genetic modifiers that cause a more severe disease phenotype. Two models from this screen, Tvrm266 and Tvrm323, exhibited increased retinal dysplasia. Genetic mapping with high-throughput exome and candidate-gene sequencing identified causative mutations in Arhgef12 and Prkci, respectively. Epistasis analysis of both strains indicated that the increased dysplastic phenotype required homozygosity of the Crb1rd8 allele. Retinal dysplastic lesions in Tvrm266 mice were smaller and caused less photoreceptor degeneration than those in Tvrm323 mice, which developed an early, large diffuse lesion phenotype. At one month of age, Müller glia and microglia mislocalization at dysplastic lesions in both modifier strains was similar to that in B6.Cg-Crb1rd8/Pjn mice but photoreceptor cell mislocalization was more extensive. External limiting membrane disruption was comparable in Tvrm266 and B6.Cg-Crb1rd8/Pjn mice but milder in Tvrm323 mice. Immunohistological analysis of mice at postnatal day 0 indicated a normal distribution of mitotic cells in Tvrm266 and Tvrm323 mice, suggesting normal early development. Aberrant electroretinography responses were observed in both models but functional decline was significant only in Tvrm323 mice. These results identify Arhgef12 and Prkci as modifier genes that differentially shape Crb1-associated retinal disease, which may be relevant to understanding clinical variability and underlying disease mechanisms in humans.


Asunto(s)
Proteínas del Tejido Nervioso , Displasia Retiniana , Factores de Intercambio de Guanina Nucleótido Rho , Animales , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Retina/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Displasia Retiniana/genética , Displasia Retiniana/metabolismo , Displasia Retiniana/patología , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo
2.
Adv Exp Med Biol ; 1415: 27-36, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440010

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of blindness in the global aging population. Familial aggregation and genome-wide association (GWA) studies have identified gene variants associated with AMD, implying a strong genetic contribution to AMD development. Two loci, on human Chr 1q31 and 10q26, respectively, represent the most influential of all genetic factors. While the role of CFH at Chr 1q31 is well established, uncertainty remains about the genes ARMS2 and HTRA1, at the Chr 10q26 locus. Since both genes are in strong linkage disequilibrium, assigning individual gene effects is difficult. In this chapter, we review current literature about ARMS2 and HTRA1 and their relevance to AMD risk. Future studies will be necessary to unravel the mechanisms by which they contribute to AMD.


Asunto(s)
Degeneración Macular , Proteínas , Humanos , Anciano , Proteínas/genética , Serina Endopeptidasas/genética , Estudio de Asociación del Genoma Completo , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Degeneración Macular/genética , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Factor H de Complemento/genética , Genotipo
3.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216333

RESUMEN

Fluid and solute transporters of the retinal pigment epithelium (RPE) are core components of the outer blood-retinal barrier. Characterizing these transporters and their role in retinal homeostasis may provide insights into ocular function and disease. Here, we describe RPE defects in tvrm77 mice, which exhibit hypopigmented patches in the central retina. Mapping and nucleotide sequencing of tvrm77 mice revealed a disrupted 5' splice donor sequence in Slc4a5, a sodium bicarbonate cotransporter gene. Slc4a5 expression was reduced 19.7-fold in tvrm77 RPE relative to controls, and alternative splice variants were detected. SLC4A5 was localized to the Golgi apparatus of cultured human RPE cells and in apical and basal membranes. Fundus imaging, optical coherence tomography, microscopy, and electroretinography (ERG) of tvrm77 mice revealed retinal detachment, hypopigmented patches corresponding to neovascular lesions, and retinal folds. Detachment worsened and outer nuclear layer thickness decreased with age. ERG a- and b-wave response amplitudes were initially normal but declined in older mice. The direct current ERG fast oscillation and light peak were reduced in amplitude at all ages, whereas other RPE-associated responses were unaffected. These results link a new Slc4a5 mutation to subretinal fluid accumulation and altered light-evoked RPE electrophysiological responses, suggesting that SLC4A5 functions at the outer blood-retinal barrier.


Asunto(s)
Mutación/genética , Empalme del ARN/genética , Retina/patología , Desprendimiento de Retina/genética , Epitelio Pigmentado de la Retina/patología , Simportadores de Sodio-Bicarbonato/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Desprendimiento de Retina/patología , Tomografía de Coherencia Óptica/métodos
4.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36233305

RESUMEN

Congenital disorders of glycosylation (CDG) are a heterogenous group of primarily autosomal recessive mendelian diseases caused by disruptions in the synthesis of lipid-linked oligosaccharides and their transfer to proteins. CDGs usually affect multiple organ systems and vary in presentation, even within families. There is currently no cure, and treatment is aimed at ameliorating symptoms and improving quality of life. Here, we describe a chemically induced mouse mutant, tvrm76, with early-onset photoreceptor degeneration. The recessive mutation was mapped to Chromosome 9 and associated with a missense mutation in the Dpagt1 gene encoding UDP-N-acetyl-D-glucosamine:dolichyl-phosphate N-acetyl-D-glucosaminephosphotransferase (EC 2.7.8.15). The mutation is predicted to cause a substitution of aspartic acid with glycine at residue 166 of DPAGT1. This represents the first viable animal model of a Dpagt1 mutation and a novel phenotype for a CDG. The increased expression of Ddit3, and elevated levels of HSPA5 (BiP) suggest the presence of early-onset endoplasmic reticulum (ER) stress. These changes were associated with the induction of photoreceptor apoptosis in tvrm76 retinas. Mutations in human DPAGT1 cause myasthenic syndrome-13 and severe forms of a congenital disorder of glycosylation Type Ij. In contrast, Dpagt1tvrm76 homozygous mice present with congenital photoreceptor degeneration without overt muscle or muscular junction involvement. Our results suggest the possibility of DPAGT1 mutations in human patients that present primarily with retinitis pigmentosa, with little or no muscle disease. Variants in DPAGT1 should be considered when evaluating cases of non-syndromic retinal degeneration.


Asunto(s)
Trastornos Congénitos de Glicosilación , Enfermedades de la Retina , Acetilglucosamina , Animales , Ácido Aspártico/genética , Trastornos Congénitos de Glicosilación/genética , Glicina/genética , Humanos , Ratones , Debilidad Muscular , Mutación , Mutación Missense , Fosfatos , Calidad de Vida , Uridina Difosfato
5.
Cells ; 9(4)2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290105

RESUMEN

Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.


Asunto(s)
Modelos Animales de Enfermedad , Células Fotorreceptoras/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Animales , Humanos , Ratones , Degeneración Retiniana/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA