Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35563006

RESUMEN

The polyamines, spermine (Spm) and spermidine (Spd), are important for cell growth and function. Their homeostasis is strictly controlled, and a key downregulator of the polyamine pool is the polyamine-inducible protein, antizyme 1 (OAZ1). OAZ1 inhibits polyamine uptake and targets ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis, for proteasomal degradation. Here we report, for the first time, that polyamines induce dimerization of mouse recombinant full-length OAZ1, forming an (OAZ1)2-Polyamine complex. Dimerization could be modulated by functionally active C-methylated spermidine mimetics (MeSpds) by changing the position of the methyl group along the Spd backbone-2-MeSpd was a poor inducer as opposed to 1-MeSpd, 3-MeSpd, and Spd, which were good inducers. Importantly, the ability of compounds to inhibit polyamine uptake correlated with the efficiency of the (OAZ1)2-Polyamine complex formation. Thus, the (OAZ1)2-Polyamine complex may be needed to inhibit polyamine uptake. The efficiency of polyamine-induced ribosomal +1 frameshifting of OAZ1 mRNA could also be differentially modulated by MeSpds-2-MeSpd was a poor inducer of OAZ1 biosynthesis and hence a poor downregulator of ODC activity unlike the other MeSpds. These findings offer new insight into the OAZ1-mediated regulation of polyamine homeostasis and provide the chemical tools to study it.


Asunto(s)
Poliaminas , Espermidina , Animales , Dimerización , Sistema de Lectura Ribosómico , Ratones , Ornitina Descarboxilasa/metabolismo , Poliaminas/química , Poliaminas/metabolismo , Poliaminas/farmacología , Proteínas , Espermidina/química , Espermidina/metabolismo , Espermidina/farmacología
2.
Org Biomol Chem ; 19(34): 7379-7389, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198312

RESUMEN

Nucleoside analogues have long served as key chemotherapeutic drugs for the treatment of viral infections and cancers. Problems associated with the development of drug resistance have led to a search for the design of nucleosides capable of bypassing point mutations in the target enzyme's binding site. As a possible answer to this, the Seley-Radtke group developed a flexible nucleoside scaffold (fleximers), where the heterocyclic purine base is split into its two components, i.e. pyrimidine and imidazole. Herein, we present a series of new pyrazole-containing flex-bases and the corresponding fleximer analogues of 8-aza-7-deaza nucleosides. Subsequent studies found that pyrazole-containing flex-bases are substrates of purine nucleoside phosphorylase (PNP). We have compared the chemical synthesis of fleximers and enzymatic approaches with both isolated enzymes and the use of E. coli cells overproducing PNP. The latter provided stereochemically pure pyrazole-containing ß-d-ribo- and ß-d-2'-deoxyribo-fleximers and are beneficial in terms of environmental issues, are more economical, and streamline the steps required from a chemical approach. The reaction is carried out in water, avoiding hazardous chemicals, and the products are isolated by ion-exchange chromatography using water/ethanol mixtures for elution. Moreover, the target nucleosides were obtained on a multi-milligram scale with >97-99% purity, and the reactions can be easily scaled up.


Asunto(s)
Adenosina
3.
Biochem J ; 475(3): 663-676, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29301981

RESUMEN

Replacing protium with deuterium is an efficient method to modulate drug metabolism. N-alkylated polyamine analogues are polyamine antimetabolites with proven anticancer efficacy. We have characterized earlier the preferred metabolic routes of N1,N12-diethylspermine (DESpm), N1-benzyl-N12-ethylspermine (BnEtSpm) and N1,N12-dibenzylspermine (DBSpm) by human recombinant spermine oxidase (SMOX) and acetylpolyamine oxidase (APAO). Here, we studied the above analogues, their variably deuterated counterparts and their metabolites as substrates and inhibitors of APAO, SMOX, semicarbazide-sensitive amine oxidase (SSAO), diamine oxidase (DAO) and monoamine oxidases. We found that targeted deuteration efficiently redirected the preferable cleavage site and suppressed reaction rate by APAO and SMOX in vitro We found a three- to six-fold decline in Vmax with moderate variable effect on Km when deuterium was located at the preferred hydrogen abstraction site of the analogue. We also found some of the metabolites to be potent inhibitors of DAO and SSAO. Surprisingly, analogue deuteration did not markedly alter the anti-proliferative efficacy of the drugs in DU145 prostate cancer cells, while in mouse embryonic fibroblasts, which had higher basal APAO and SMOX activities, moderate effect was observed. Interestingly, the anti-proliferative efficacy of the analogues did not correlate with their ability to suppress polyamine biosynthetic enzymes, induce spermidine/spermine-N1-acetyltransferase or deplete intracellular polyamine levels, but correlated with their ability to induce SMOX. Our data show that selective deuteration of N-alkyl polyamine analogues enables metabolic switching, offering the means for selective generation of bioactive metabolites inhibiting, e.g. SSAO and DAO, thus setting a novel basis for in vivo studies of this class of analogues.


Asunto(s)
Deuterio/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Poliaminas/metabolismo , Animales , Línea Celular Tumoral , Humanos , Inactivación Metabólica/genética , Ratones , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Poliaminas/química , Espermina/química , Espermina/metabolismo , Poliamino Oxidasa
4.
Biochem Biophys Res Commun ; 483(2): 904-909, 2017 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-28082202

RESUMEN

Chronic infection with hepatitis C virus (HCV) induces liver fibrosis and cancer. In particular metabolic alterations and associated oxidative stress induced by the virus play a key role in disease progression. Albeit the pivotal role of biogenic polyamines spermine and spermidine in the regulation of liver metabolism and function and cellular control of redox homeostasis, their role in the viral life cycle has not been studied so far. Here we show that in cell lines expressing two viral proteins, capsid and the non-structural protein 5A, expression of the two key enzymes of polyamine biosynthesis and degradation, respectively, ornithine decarboxylase (ODC) and spermidine/spermine-N1-acetyl transferase (SSAT), increases transiently. In addition, both HCV core and NS5A induce sustained expression of spermine oxidase (SMO), an enzyme that catalyzes conversion of spermine into spermidine. Human hepatoma Huh7 cells harboring a full-length HCV replicon exhibited suppressed ODC and SSAT levels and elevated levels of SMO leading to decreased intracellular concentrations of spermine and spermidine. Thus, role of HCV-driven alterations of polyamine metabolism in virus replication and development of HCV-associated liver pathologies should be explored in future.


Asunto(s)
Poliaminas Biogénicas/metabolismo , Hepacivirus/fisiología , Hepacivirus/patogenicidad , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Línea Celular , Regulación Enzimológica de la Expresión Génica , Hepacivirus/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Proteínas del Núcleo Viral/fisiología , Proteínas no Estructurales Virales/fisiología , Replicación Viral/fisiología , Poliamino Oxidasa
5.
Biochem J ; 473(10): 1433-41, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27001865

RESUMEN

Polyamine metabolism is an attractive anticancer drug target, since polyamines are absolutely required for cellular proliferation, and increased levels of polyamines and their biosynthetic enzyme ornithine decarboxylase (ODC) are associated with cancer. Triethylenetetramine (TETA) is a charge-deficient isosteric analogue of the polyamine spermidine (Spd) and a Cu(II)-chelating compound used for the treatment of Wilson's disease, and it has been implicated as a potential anticancer therapeutic drug. In the present study, we studied the effects of TETA in comparison with two other Cu(II)-chelators, D-penicillamine (PA) and tetrathiomolybdate (TTM), on polyamine metabolism in DU145 prostate carcinoma, MCF-7 breast carcinoma and JEG-3 choriocarcinoma cells. TETA induced antizyme, down-regulated ODC and inhibited [(14)C] Spd uptake. Moreover, it completely prevented α-difluoromethylornithine (DFMO)-induced increase in [(14)C] Spd uptake, and inhibited [(14)C] putrescine (Put) uptake and ODC activity in vivo Seven-day treatment of DU145 cells with TETA caused growth cessation by reducing intracellular polyamine levels and suppressing the formation of hypusinated eukaryotic translation initiation factor 5A (eIF5A). TETA or its N-acetylated metabolites also inhibited spermine (Spm), diamine and semicarbazide-sensitive amine oxidases and decreased the level of intracellular reactive oxygen species. Moreover, TETA inhibited the utilization of Put as energy source via the tricarboxylic acid (TCA) cycle, as indicated by decreased production of (14)CO2 from [(14)C] Put. These results indicate that TETA attacks multiple proven anticancer drug targets not attributed to copper chelation, which warrants further studies to reveal its potential in cancer chemoprevention and cure.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Poliaminas/metabolismo , Trientina/farmacología , Amina Oxidasa (conteniendo Cobre) , Línea Celular Tumoral , Eflornitina/metabolismo , Femenino , Humanos , Células MCF-7 , Masculino , Molibdeno/farmacología , Penicilamina/metabolismo , Putrescina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Espermina/metabolismo
6.
Amino Acids ; 48(10): 2293-302, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27438264

RESUMEN

Tamoxifen is the most widely used drug to treat women with estrogen receptor α (ERα)-positive breast cancer. Endoxifen is recognized as the active metabolite of tamoxifen in humans. We studied endoxifen effects on ERα-positive MCF-7 breast cancer cells. Estradiol increased the proliferation of MCF-7 cells by two- to threefold and endoxifen suppressed its effects. Endoxifen suppressed c-myc, c-fos and Tff1 oncogene expression, as revealed by RT-PCR. Estradiol increased the activity of ornithine decarboxylase (ODC) and adenosyl methioninedecarboxylase (AdoMetDC), whereas endoxifen suppressed these enzyme activities. Endoxifen increased activities of spermine oxidase (SMO) and acetyl polyamine oxidase (APAO) significantly, and reduced the levels of putrescine and spermidine. These data suggest a possible mechanism for the antiestrogenic effects of tamoxifen/endoxifen, involving the stimulation of polyamine oxidase enzymes. Therefore, SMO and APAO stimulation might be useful biomarkers for the efficacy of endoxifen treatment of breast cancer.


Asunto(s)
Poliaminas Biogénicas/biosíntesis , Neoplasias de la Mama/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas de Neoplasias/biosíntesis , Tamoxifeno/análogos & derivados , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Estradiol/farmacología , Femenino , Humanos , Células MCF-7 , Tamoxifeno/farmacología
7.
Amino Acids ; 46(3): 605-20, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24022706

RESUMEN

Polyamine metabolism is intimately linked to the physiological state of the cell. Low polyamines levels promote growth cessation, while increased concentrations are often associated with rapid proliferation or cancer. Delicately balanced biosynthesis, catabolism, uptake and excretion are very important for maintaining the intracellular polyamine homeostasis, and deregulated polyamine metabolism is associated with imbalanced metabolic red/ox state. Although many cellular targets of polyamines have been described, the precise molecular mechanisms in these interactions are largely unknown. Polyamines are readily interconvertible which complicate studies on the functions of the individual polyamines. Thus, non-metabolizable polyamine analogues, like carbon-methylated analogues, are needed to circumvent that problem. This review focuses on methylated putrescine, spermidine and spermine analogues in which at least one hydrogen atom attached to polyamine carbon backbone has been replaced by a methyl group. These analogues allow the regulation of both metabolic and catabolic fates of the parent molecule. Substituting the natural polyamines with methylated analogue(s) offers means to study either the functions of an individual polyamine or the effects of altered polyamine metabolism on cell physiology. In general, gem-dimethylated analogues are considered to be non-metabolizable by polyamine catabolizing enzymes spermidine/spermine-N¹-acetyltransferase and acetylpolyamine oxidase and they support short-term cellular proliferation in many experimental models. Monomethylation renders the analogues chiral, offering some advantage over gem-dimethylated analogues in the specific regulation of polyamine metabolism. Thus, methylated polyamine analogues are practical tools to meet existing biological challenges in solving the physiological functions of polyamines.


Asunto(s)
Poliaminas/metabolismo , Animales , Humanos , Metilación
8.
Biochem J ; 453(3): 467-74, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23672317

RESUMEN

We have shown previously that the polyamine spermidine is indispensable for differentiation of 3T3-L1 preadipocytes. In the present study, we examined the mechanism of spermidine function by using the polyamine biosynthesis inhibitor α-difluoromethylornithine in combination with the metabolically stable polyamine analogues γ-methylspermidine or (R,R)-α,ω-bismethylspermine. At the early phase of differentiation, spermidine-depleted 3T3-L1 cells showed decreased translation of the transcription factor C/EBPß (CCAAT/enhancer-binding protein ß), decreased PP2A (protein phosphatase 2A) activity and increased cytoplasmic localization of the RNA-binding protein HuR (human antigen R). The amount of HuR bound to C/EBPß mRNA was reduced, whereas the amount of bound CUGBP2, an inhibitor of C/EBPß translation, was increased. ANP32 (acidic nuclear phosphoprotein 32) proteins, which are known PP2A inhibitors and HuR ligands, bound more PP2A and HuR in spermidine-depleted than in control cells, whereas immunodepletion of ANP32 proteins from the lysate of spermidine-depleted cells restored PP2A activity. Taken together, our data shows that spermidine promotes C/EBPß translation in differentiating 3T3-L1 cells, and that this process is controlled by the interaction of ANP32 with HuR and PP2A.


Asunto(s)
Adipogénesis/efectos de los fármacos , Proteínas ELAV/metabolismo , Proteínas Nucleares/metabolismo , Proteína Fosfatasa 2/metabolismo , Espermidina/farmacología , Células 3T3-L1 , Adipogénesis/genética , Animales , Proteínas ELAV/genética , Eflornitina/farmacología , Femenino , Masculino , Ratones , Proteínas Nucleares/genética , Poliaminas/química , Poliaminas/farmacología , Proteína Fosfatasa 2/genética , Ratas , Ratas Wistar
9.
Drug Metab Dispos ; 41(1): 30-2, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23024204

RESUMEN

Triethylenetetramine (TETA; Syprine; Merck Rahway, NJ), a drug for Wilson's disease, is a copper chelator and a charge-deficient analog of polyamine spermidine. We recently showed that TETA is metabolized in vitro by polyamine catabolic enzyme spermidine/spermine-N(1)-acetyltransferase (SSAT1) and by thialysine acetyltransferase (SSAT2) to its monoacetylated derivative (MAT). The acetylation of TETA is increased in SSAT1-overexpressing mice compared with wild-type mice. However, SSAT1-deficient mice metabolize TETA at the same rate as the wild-type mice, indicating the existence of another N-acetylase respons 2ible for its metabolism in mice. Here, we show that siRNA-mediated knockdown of SSAT2 in HEPG2 cells and in primary hepatocytes from the SSAT1-deficient or wild-type mice reduced the metabolism of TETA to MAT. By contrast, 1,12-diamino-3,6,9-triazadodecane(SpmTrien), a charge-deficient spermine analog, was an extremely poor substrate of human recombinant SSAT2 and was metabolized by SSAT1 in HEPG2 cells and in wild-type primary hepatocytes. Thus, despite the similar structures of TETA and SpmTrien, SSAT2 is the main acetylator of TETA, whereas SpmTrien is primarily acetylated by SSAT1.


Asunto(s)
Acetiltransferasas/metabolismo , Espermina/análogos & derivados , Trientina/metabolismo , Animales , Células Cultivadas , Hepatocitos/enzimología , Hepatocitos/metabolismo , Ratones , Proteínas Recombinantes/metabolismo , Espermina/metabolismo
10.
Amino Acids ; 42(2-3): 485-93, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21809078

RESUMEN

The polyamines, spermidine and spermine, are abundant organic cations participating in many important cellular processes. We have previously shown that the rate-limiting enzyme of polyamine catabolism, spermidine/spermine N(1)-acetyltransferase (SSAT), has an alternative mRNA splice variant (SSATX) which undergoes degradation via nonsense-mediated mRNA decay (NMD) pathway, and that the intracellular polyamine level regulates the ratio of the SSATX and SSAT splice variants. The aim of this study was to investigate the effect of SSATX level manipulation on SSAT activity in cell culture, and to examine the in vivo expression levels of SSATX and SSAT mRNA. Silencing SSATX expression with small interfering RNA led to increased SSAT activity. Furthermore, transfection of SSAT-deficient cells with mutated SSAT gene (which produced only trace amount of SSATX) yielded higher SSAT activity than transfection with natural SSAT gene (which produced both SSAT and SSATX). Blocking NMD in vivo by protein synthesis inhibitor cycloheximide resulted in accumulation of SSATX mRNA, and like in cell culture, the increase of SSATX mRNA was prevented by administration of polyamine analog N(1),N(11)-diethylnorspermine. Although SSATX/total SSAT mRNA ratio did not correlate with polyamine levels or SSAT activity between different tissues, increasing polyamine levels in a given tissue led to decreased SSATX/total SSAT mRNA ratio and vice versa. Taken together, the regulated unproductive splicing and translation of SSAT has a physiological relevance in modulating SSAT activity. However, in addition to polyamine level there seems to be additional factors regulating tissue-specific alternative splicing of SSAT.


Asunto(s)
Acetiltransferasas/genética , Empalme Alternativo , Animales , Secuencia de Bases , Células Cultivadas , Cartilla de ADN , Silenciador del Gen , Ratones , ARN Mensajero/genética , Transfección
11.
Amino Acids ; 42(2-3): 685-95, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21861168

RESUMEN

The polyamines, putrescine, spermidine, and spermine, are ubiquitous multifunctional cations essential for cellular proliferation. One specific function of spermidine in cell growth is its role as a butylamine donor for hypusine synthesis in the eukaryotic initiation factor 5A (eIF5A). Here, we report the ability of novel mono-methylated spermidine analogs (α-MeSpd, ß-MeSpd, γ-MeSpd, and ω-MeSpd) to function in the hypusination of eIF5A and in supporting the growth of DFMO-treated DU145 cells. We also tested them as substrates and inhibitors for deoxyhypusine synthase (DHS) in vitro. Of these compounds, α-MeSpd, ß-MeSpd, and γ-MeSpd (but not ω-MeSpd) were substrates for DHS in vitro, while they all inhibited the enzyme reaction. As racemic mixtures, only α-MeSpd and ß-MeSpd supported long-term growth (9-18 days) of spermidine-depleted DU145 cells, whereas γ-MeSpd and ω-MeSpd did not. The S-enantiomer of α-MeSpd, which supported long-term growth, was a good substrate for DHS in vitro, whereas the R-isomer was not. The long-term growth of DFMO-treated cells correlated with the hypusine modification of eIF5A by intracellular methylated spermidine analogs. These results underscore the critical requirement for hypusine modification in mammalian cell proliferation and provide new insights into the specificity of the deoxyhypusine synthase reaction.


Asunto(s)
División Celular/efectos de los fármacos , Lisina/análogos & derivados , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Espermidina/farmacología , Western Blotting , Línea Celular Tumoral , Humanos , Lisina/metabolismo , Masculino , Metilación , Espermidina/análogos & derivados , Factor 5A Eucariótico de Iniciación de Traducción
12.
Amino Acids ; 42(2-3): 899-911, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21830120

RESUMEN

BE-3-3-3-3 (1,15-(ethylamino)4,8,12-triazapentadecane) is a bis(ethyl)polyamine analogue under investigation as a therapeutic agent for breast cancer. Since estradiol (E(2)) is a critical regulatory molecule in the growth of breast cancer, we examined the effect of BE-3-3-3-3 on estrogen receptor α (ERα) positive MCF-7 cells in the presence and absence of E(2). In the presence of E(2), a concentration-dependent decrease in DNA synthesis was observed using [(3)H]-thymidine incorporation assay. In the absence of E(2), low concentrations (2.5-10 µM) of BE-3-3-3-3 increased [(3)H]-thymidine incorporation at 24 and 48 h. BE-3-3-3-3 induced the expression of early response genes, c-myc and c-fos, in the absence of E(2), but not in its presence, as determined by real-time quantitative polymerase chain reaction (qPCR). BE-3-3-3-3 had no significant effect on these genes in an ERα-negative cell line, MDA-MB-231. Chromatin immunoprecipitation assay demonstrated enhanced promoter occupation by either E(2) or BE-3-3-3-3 of an estrogen-responsive gene pS2/Tff1 by ERα and its co-activator, steroid receptor co-activator 3 (SRC-3). Confocal microscopy of BE-3-3-3-3-treated cells revealed membrane localization of ERα, similar to that induced by E(2). The failure of BE-3-3-3-3 to inhibit cell proliferation was associated with autophagic vacuole formation, and the induction of Beclin 1 and MAP LC3 II. These results indicate a differential effect of BE-3-3-3-3 on MCF-7 cells in the absence and presence of E(2), and suggest that pre-clinical and clinical development of polyamine analogues might require special precautions and selection of sensitive subpopulation of patients.


Asunto(s)
Neoplasias de la Mama/patología , Imitación Molecular , Poliaminas/farmacología , Receptores de Estrógenos/metabolismo , Secuencia de Bases , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Cartilla de ADN , Replicación del ADN/efectos de los fármacos , Femenino , Humanos , Poliaminas/química , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Drug Metab Dispos ; 39(12): 2242-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21878558

RESUMEN

Triethylenetetramine (TETA) is an efficient copper chelator that has versatile clinical potential. We have recently shown that spermidine/spermine-N(1)-acetyltransferase (SSAT1), the key polyamine catabolic enzyme, acetylates TETA in vitro. Here, we studied the metabolism of TETA in three different mouse lines: syngenic, SSAT1-overexpressing, and SSAT1-deficient (SSAT1-KO) mice. The mice were sacrificed at 1, 2, or 4 h after TETA injection (300 mg/kg i.p.). We found only N(1)-acetyltriethylenetetramine (N(1)AcTETA) and/or TETA in the liver, kidney, and plasma samples. As expected, SSAT1-overexpressing mice acetylated TETA at an accelerated rate compared with syngenic and SSAT1-KO mice. It is noteworthy that SSAT1-KO mice metabolized TETA as syngenic mice did, probably by thialysine acetyltransferase, which had a K(m) value of 2.5 ± 0.3 mM and a k(cat) value of 1.3 s(-1) for TETA when tested in vitro with the human recombinant enzyme. Thus, the present results suggest that there are at least two N-acetylases potentially metabolizing TETA. However, their physiological significance for TETA acetylation requires further studies. Furthermore, we detected chemical intramolecular N-acetyl migration from the N(1) to N(3) position of N(1)AcTETA and N(1),N(8)-diacetyltriethylenetetramine in an acidified high-performance liquid chromatography sample matrix. The complex metabolism of TETA together with the intramolecular N-acetyl migration may explain the huge individual variations in the acetylation rate of TETA reported earlier.


Asunto(s)
Acetiltransferasas/metabolismo , Trientina/metabolismo , Acetilación , Acetiltransferasas/genética , Animales , Cromatografía Liquida , Hígado/enzimología , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
14.
Transgenic Res ; 20(2): 387-96, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20577801

RESUMEN

Enhanced polyamine catabolism via polyamine acetylation-oxidation elevates the oxidative stress in an organism due to increased production of reactive oxygen species (ROS). We studied a transgenic mouse line overexpressing the rate limiting enzyme in the polyamine catabolism, spermidine/spermine N (1)-acetyltransferase (SSAT) that is characterized by increased putrescine and decreased spermidine and spermine pools. In order to protect the mice from the chronic oxidative stress produced by the activation of polyamine catabolism, the hepatic expression of the transcription factor p53 was found threefold elevated in the transgenic mice. In addition, the prolonged activation of p53 accelerated the aging of transgenic mice and reduced their lifespan (50%). Aging was associated with decreased antioxidant enzyme activities. In the transgenic mice the activities of catalase and Cu, Zn-superoxide dismutase (SOD) were 42 and 23% reduced respectively, while the expression of CYP450 2E1 was 60% decreased and oxidative stress measured as protein carbonyl content was tenfold elevated. In the transgenic mice, the age-related repression of the different antioxidant enzymes served as a protection against the hepatotoxic effects of carbon tetrachloride and thioacetamide.


Asunto(s)
Acetiltransferasas/genética , Envejecimiento/efectos de los fármacos , Estrés Oxidativo/fisiología , Poliaminas/metabolismo , Envejecimiento/metabolismo , Animales , Tetracloruro de Carbono/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Transgénicos , Poliaminas/farmacología , Putrescina/metabolismo , Putrescina/farmacología , Espermidina/metabolismo , Espermidina/farmacología , Espermina/metabolismo , Espermina/farmacología , Tioacetamida/farmacología , Transgenes , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba
15.
Pancreatology ; 11(2): 83-91, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21525776

RESUMEN

BACKGROUND: Overinduced polyamine catabolism (PC) in a transgenic rat model has been suggested to be a mediator of trypsin activation which is important in acinar cell necrosis. PC has also been observed in experimental taurodeoxycholate pancreatitis. We hypothesized that PC may be a mediator of trypsin activation in taurodeoxycholate pancreatitis. METHODS: Pancreatitis was induced in wild-type rats by 2 or 6% taurodeoxycholate infusion or in transgenic rats by overexpressing spermidine/spermine N(1)-acetyltransferase (SSAT). The time courses of necrosis, caspase-3 immunostaining, SSAT, polyamine levels, and trypsinogen activation peptide (TAP) were monitored. The effect of the polyamine analogue bismethylspermine (Me(2)Spm) was investigated. RESULTS: In a transgenic pancreatitis model, TAP and acinar necrosis increased simultaneously after the activation of SSAT, depletion of spermidine, and development of apoptosis. In taurodeoxycholate pancreatitis, necrosis developed along with the accumulation of TAP. SSAT was activated simultaneously or after TAP accumulation and less than in the transgenic model, with less depletion of spermidine than in the transgenic model. Supplementation with Me(2)Spm ameliorated the extent of acinar necrosis at 24 h, but contrary to previous findings in the transgenic model, in the taurodeoxycholate model it did not affect trypsin activation. Compared with the transgenic model, no extensive apoptosis was found in taurodeoxycholate pancreatitis. CONCLUSIONS: Contrary to transgenic SSAT-overinduced pancreatitis, PC may not be a mediator of trypsin activation in taurodeoxycholate pancreatitis. The beneficial effect of polyamine supplementation on necrosis in taurodeoxycholate pancreatitis may rather be mediated by other mechanisms than amelioration of trypsin activation. and IAP.


Asunto(s)
Pancreatitis/metabolismo , Poliaminas/metabolismo , Tripsinógeno/metabolismo , Acetiltransferasas/metabolismo , Animales , Apoptosis , Modelos Animales de Enfermedad , Activación Enzimática , Masculino , Oligopéptidos/metabolismo , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Ratas Wistar , Espermina/análogos & derivados , Espermina/uso terapéutico , Ácido Taurodesoxicólico , Tripsina/metabolismo
16.
Biomolecules ; 11(5)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068700

RESUMEN

Polyamine spermidine is essential for the proliferation of eukaryotic cells. Administration of polyamine biosynthesis inhibitor α-difluoromethylornithine (DFMO) induces cytostasis that occurs in two phases; the early phase which can be reversed by spermidine, spermine, and some of their analogs, and the late phase which is characterized by practically complete depletion of cellular spermidine pool. The growth of cells at the late phase can be reversed by spermidine and by very few of its analogs, including (S)-1-methylspermidine. It was reported previously (Witherspoon et al. Cancer Discovery 3(9); 1072-81, 2013) that DFMO treatment leads to depletion of cellular thymidine pools, and that exogenous thymidine supplementation partially prevents DFMO-induced cytostasis without affecting intracellular polyamine pools in HT-29, SW480, and LoVo colorectal cancer cells. Here we show that thymidine did not prevent DFMO-induced cytostasis in DU145, LNCaP, MCF7, CaCo2, BT4C, SV40MES13, HepG2, HEK293, NIH3T3, ARPE19 or HT-29 cell lines, whereas administration of functionally active mimetic of spermidine, (S)-1-methylspermidine, did. Thus, the effect of thymidine seems to be specific only for certain cell lines. We conclude that decreased polyamine levels and possibly also distorted pools of folate-dependent metabolites mediate the anti-proliferative actions of DFMO. However, polyamines are necessary and sufficient to overcome DFMO-induced cytostasis, while thymidine is generally not.


Asunto(s)
Citostáticos/farmacología , Eflornitina/efectos adversos , Neoplasias/tratamiento farmacológico , Poliaminas/farmacología , Timidina/farmacología , Animales , Células Cultivadas , Humanos , Ratones , Neoplasias/metabolismo , Neoplasias/patología , Inhibidores de la Ornitina Descarboxilasa/efectos adversos , Inhibidores de la Ornitina Descarboxilasa/farmacología
17.
Nat Med ; 27(11): 1941-1953, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34608330

RESUMEN

Obesity is considered an important factor for many chronic diseases, including diabetes, cardiovascular disease and cancer. The expansion of adipose tissue in obesity is due to an increase in both adipocyte progenitor differentiation and mature adipocyte cell size. Adipocytes, however, are thought to be unable to divide or enter the cell cycle. We demonstrate that mature human adipocytes unexpectedly display a gene and protein signature indicative of an active cell cycle program. Adipocyte cell cycle progression associates with obesity and hyperinsulinemia, with a concomitant increase in cell size, nuclear size and nuclear DNA content. Chronic hyperinsulinemia in vitro or in humans, however, is associated with subsequent cell cycle exit, leading to a premature senescent transcriptomic and secretory profile in adipocytes. Premature senescence is rapidly becoming recognized as an important mediator of stress-induced tissue dysfunction. By demonstrating that adipocytes can activate a cell cycle program, we define a mechanism whereby mature human adipocytes senesce. We further show that by targeting the adipocyte cell cycle program using metformin, it is possible to influence adipocyte senescence and obesity-associated adipose tissue inflammation.


Asunto(s)
Adipocitos/metabolismo , Ciclo Celular/fisiología , Senescencia Celular/fisiología , Hiperinsulinismo/patología , Obesidad/patología , Tejido Adiposo/metabolismo , Diferenciación Celular/fisiología , Ciclina D1/metabolismo , Humanos , Hipoglucemiantes/farmacología , Metformina/farmacología
18.
Amino Acids ; 38(2): 501-7, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19953281

RESUMEN

Ionic interactions are essential for the biological functions of the polyamines spermidine and spermine in mammalian physiology. Here, we describe a simple gram scale method to prepare 1,12-diamino-3,6,9-triazadodecane (SpmTrien), an isosteric charge-deficient spermine analogue. The protonation sites of SpmTrien were determined at pH range of 2.2-11.0 using two-dimensional (1)H-(15)N NMR spectroscopy, which proved to be more feasible than conventional methods. The macroscopic pK(a) values of SpmTrien (3.3, 6.3, 8.5, 9.5 and 10.3) are significantly lower than those of 1,12-diamino-4,9-diazadodecane (spermine). The effects of SpmTrien and its parent molecule, 1,8-diamino-3,6-diazaoctane (Trien), on cell growth and polyamine metabolism were investigated in DU145 prostate carcinoma cells. SpmTrien downregulated the biosynthetic enzymes ornithine decarboxylase (ODC) and S-adenosyl-L: -methionine decarboxylase and decreased intracellular polyamine levels, whereas the effects of Trien alone were minor. Interestingly, both SpmTrien and Trien were able to partially overcome growth arrest induced by an ODC inhibitor, alpha-difluoromethylornithine, indicating that they are able to mimic some functions of the natural polyamines. Thus, SpmTrien is a novel tool to influence polyamine interaction sites at the molecular level and offers a new means to study the contribution of the protonation of spermine amino group(s) in the regulation of polyamine-dependent biological processes.


Asunto(s)
Espermina/análogos & derivados , Carboxiliasas/antagonistas & inhibidores , Carboxiliasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Cinética , Ornitina Descarboxilasa/metabolismo , Inhibidores de la Ornitina Descarboxilasa , Poliaminas/metabolismo , Espermina/síntesis química , Espermina/química , Espermina/farmacología
19.
Amino Acids ; 38(2): 575-81, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19956991

RESUMEN

The role of polyamines in carbon tetrachloride (CCl(4))-induced organ injury was studied in syngenic rats and transgenic rats with activated polyamine catabolism. In syngenic rats, administration of CCl(4) resulted in the induction of hepatic spermidine/spermine N(1)-acetyltransferase (SSAT), accumulation of putrescine, reduction in spermine level and appearance of moderate hepatic injury within 24 h. Upon treatment with CCl(4), transgenic rats overexpressing SSAT displayed induction of both hepatic and pancreatic SSAT, with subsequent accumulation of putrescine and decrease of both spermidine and spermine pools. Administration of CCl(4) in SSAT transgenic rats induced not only massive hepatic injury, but also severe acute necrotizing pancreatitis. Pretreatment of the animals with catabolically stable functional polyamine mimetic, alpha-methylspermidine (MeSpd) prevented pancreatic and hepatic injury in SSAT rats and markedly reduced liver damage in syngenic animals. As assessed by immunostaining of proliferating cell nuclear antigen, MeSpd increased the amount of regenerating hepatocytes in both genotypes. These results show that CCl(4) induces hepatic and pancreatic polyamine catabolism, and the extent of organ damage correlates with the degree of polyamine depletion. Furthermore, MeSpd protects against CCl(4)-induced hepatic and pancreatic damage and promotes tissue regeneration.


Asunto(s)
Tetracloruro de Carbono/toxicidad , Hígado/efectos de los fármacos , Páncreas/efectos de los fármacos , Sustancias Protectoras/administración & dosificación , Espermidina/análogos & derivados , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Animales , Tetracloruro de Carbono/administración & dosificación , Femenino , Hígado/enzimología , Hígado/metabolismo , Hígado/patología , Páncreas/enzimología , Páncreas/metabolismo , Páncreas/patología , Poliaminas/metabolismo , Ratas , Ratas Transgénicas , Ratas Wistar , Espermidina/administración & dosificación
20.
Amino Acids ; 38(2): 369-81, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20012116

RESUMEN

N-alkylated polyamine analogues have potential as anticancer and antiparasitic drugs. However, their metabolism in the host has remained incompletely defined thus potentially limiting their utility. Here, we have studied the degradation of three different spermine analogues N,N'-bis-(3-ethylaminopropyl)butane-1,4-diamine (DESPM), N-(3-benzyl-aminopropyl)-N'-(3-ethylaminopropyl)butane-1,4-diamine (BnEtSPM) and N,N'-bis-(3-benzylaminopropyl)butane-1,4-diamine (DBSPM) and related mono-alkylated derivatives as substrates of recombinant human polyamine oxidase (APAO) and spermine oxidase (SMO). APAO and SMO metabolized DESPM to EtSPD [K(m(APAO)) = 10 microM, k(cat(APAO)) = 1.1 s(-1) and K(m(SMO)) = 28 microM, k(cat(SMO)) = 0.8 s(-1), respectively], metabolized BnEtSPM to EtSPD [K(m(APAO)) = 0.9 microM, k(cat(APAO)) = 1.1 s(-1) and K(m(SMO)) = 51 microM, k(cat(SMO)) = 0.4 s(-1), respectively], and metabolized DBSPM to BnSPD [K(m(APAO)) = 5.4 microM, k(cat(APAO)) = 2.0 s(-1) and K(m(SMO)) = 33 microM, k(cat(SMO)) = 0.3 s(-1), respectively]. Interestingly, mono-alkylated spermine derivatives were metabolized by APAO and SMO to SPD [EtSPM K(m(APAO)) = 16 microM, k(cat(APAO)) = 1.5 s(-1); K(m(SMO)) = 25 microM, k(cat(SMO)) = 8.2 s(-1); BnSPM K(m(APAO) )= 6.0 microM, k(cat(APAO)) = 2.8 s(-1); K(m(SMO)) = 19 muM, k(cat(SMO)) = 0.8 s(-1), respectively]. Surprisingly, EtSPD [K(m(APAO)) = 37 microM, k(cat(APAO)) = 0.1 s(-1); K(m(SMO)) = 48 microM, k(cat(SMO)) = 0.05 s(-1)] and BnSPD [K(m(APAO)) = 2.5 microM, k(cat(APAO)) = 3.5 s(-1); K(m(SMO)) = 60 microM, k(cat(SMO)) = 0.54 s(-1)] were metabolized to SPD by both the oxidases. Furthermore, we studied the degradation of DESPM, BnEtSPM or DBSPM in the DU145 prostate carcinoma cell line. The same major metabolites EtSPD and/or BnSPD were detected both in the culture medium and intracellularly after 48 h of culture. Moreover, EtSPM and BnSPM were detected from cell samples. Present data shows that inducible SMO parallel with APAO could play an important role in polyamine based drug action, i.e. degradation of parent drug and its metabolites, having significant impact on efficiency of these drugs, and hence for the development of novel N-alkylated polyamine analogues.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Espermina/análogos & derivados , Espermina/metabolismo , Línea Celular Tumoral , Estabilidad de Enzimas , Humanos , Cinética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Poliaminas/química , Poliaminas/metabolismo , Espermina/química , Especificidad por Sustrato , Poliamino Oxidasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA