Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Immunology ; 163(4): 377-388, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34042182

RESUMEN

Apoptosis-associated speck-like protein containing a caspase recruit domain (ASC), encoded by PYCARD gene, is a 22 kDa small molecule, which aggregates into ASC specks during inflammasome activation. ASC protein is an adaptor protein present in several inflammasome complexes that performs several intra- and extracellular functions, in monomeric form or as ASC specks, during physiological and pathological processes related to inflammation and adaptive immunity. Extracellular ASC specks (eASC specks) released during cell death by pyroptosis can contribute as a danger signal to the propagation of inflammation via phagocytosis and activation of surrounding cells. ASC specks are found in the circulation of patients with chronic inflammatory diseases and have been considered as relevant blood biomarkers of inflammation. eASC amplifies the inflammatory signal, may induce the production of autoantibodies, transports molecules that bind to this complex, contributing to the generation of antibodies, and can induce the maturation of cytokines promoting the modelling of the adaptive immunity. Although several advances have been registered in the last 21 years, there are numerous unknown or enigmatic gaps in the understanding of the role of eASC specks in the organism. Here, we provide an overview about the ASC protein focusing on the probable roles of eASC specks in several diseases, up to the most recent studies concerning COVID-19.


Asunto(s)
Inmunidad Adaptativa , Alarminas/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Inflamasomas/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Animales , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , Interacciones Huésped-Patógeno , Humanos , Inflamasomas/inmunología , Inflamación/inmunología , Inflamación/patología , Fagocitosis , Piroptosis , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Transducción de Señal
2.
Toxicon ; 238: 107568, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38110040

RESUMEN

Most anti-inflammatory drugs currently adopted to treat chronic inflammatory joint diseases can alleviate symptoms but they do not lead to remission. Therefore, new and more efficient drugs are needed to block the course of joint inflammatory diseases. Animal venoms, rich in bioactive compounds, can contribute as valuable tools in this field of research. In this study, we first demonstrate the direct action of venoms on cells that constitute the articular joints. We established a platform consisting of cell-based assays to evaluate the release of cytokines (IL-6, IL-8, TNFα, IL-1ß, and IL-10) by human chondrocytes, synoviocytes and THP1 macrophages, as well as the release of neuropeptides (substance-P and ß-endorphin) by differentiated sensory neuron-like cells, 24 h after stimulation of cells with 21 animal venoms from snake and arthropod species, sourced from different taxonomic families and geographic origins. Results demonstrated that at non-cytotoxic concentrations, the venoms activate at varying degrees the secretion of inflammatory mediators involved in the pathology of articular diseases, such as IL-6, IL-8, and TNF-α by chondrocytes, synoviocytes, and macrophages and of substance P by neuron-like cells. Venoms of the Viperidae snake family were more inflammatory than those of the Elapidae family, while venoms of Arthropods were less inflammatory than snake venoms. Notably, some venoms also induced the release of the anti-inflammatory IL-10 by macrophages. However, the scorpion Buthus occitanus venom induced the release of IL-10 without increasing the release of inflammatory cytokines by macrophages. Since the cell types used in the experiments are crucial elements in joint inflammatory processes, the results of this work may guide future research on the activation of receptors and inflammatory signaling pathways by selected venoms in these particular cells, aiming at discovering new targets for therapeutic intervention.


Asunto(s)
Animales Ponzoñosos , Venenos de Artrópodos , Artrópodos , Artropatías , Venenos de Escorpión , Escorpiones , Viperidae , Animales , Humanos , Interleucina-10 , Interleucina-6 , Interleucina-8 , Venenos de Serpiente/química , Citocinas , Factor de Necrosis Tumoral alfa , Antiinflamatorios
3.
BMC Genomics ; 14: 724, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24148528

RESUMEN

BACKGROUND: The genetic basis of susceptibility to renal tumorigenesis has not yet been established in mouse strains. Mouse lines derived by bidirectional phenotypic selection on the basis of their maximal (AIRmax) or minimal (AIRmin) acute inflammatory responsiveness differ widely in susceptibility to spontaneous and urethane-induced renal tumorigenesis. To map the functional loci modulating renal tumor susceptibility in these mice, we carried out a genome-wide genetic linkage study, using SNP arrays, in an (AIRmax x AIRmin)F2 intercross population treated with a single urethane dose at 1 week of age and phenotyped for renal tumors at 35 weeks of age. RESULTS: AIRmax mice did not develop renal tumors spontaneously nor in response to urethane, whereas in AIRmin mice renal tumors formed spontaneously (in 52% of animals) and after urethane induction (89%). The tumors had a papillary morphology and were positive for alpha-methylacyl-CoA racemase and negative for CD10. By analysis of 879 informative SNPs in 662 mice, we mapped a single quantitative trait locus modulating the incidence of renal tumors in the (AIRmax x AIRmin)F2 intercross population. This locus, which we named Renal tumor modifier QTL 1 (Rtm1), mapped to chromosome 17 at 23.4 Mb (LOD score = 15.8), with SNPs rs3696835 and rs3719497 flanking the LOD score peak. The A allele of rs3719497 from AIRmin mice was associated with a 2.5-fold increased odds ratio for renal tumor development. The LOD score peak included the Tuberous sclerosis 2 (Tsc2) gene which has already been implicated in kidney disease: loss of function by germline retroviral insertion is associated with spontaneous renal tumorigenesis in the Eker rat, and heterozygous-null Tsc2(+/-) mice develop renal cystadenomas. CONCLUSIONS: We mapped Rtm1 as a single major locus modulating renal tumorigenesis in a murine intercross population. Thus, the AIR mouse lines can be considered a new genetic model for studying the role of germline and somatic molecular alterations in kidney neoplastic disease.


Asunto(s)
Genoma , Neoplasias Renales/genética , Animales , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Ligamiento Genético , Genotipo , Neoplasias Renales/epidemiología , Neoplasias Renales/patología , Escala de Lod , Ratones , Neprilisina/genética , Neprilisina/metabolismo , Oportunidad Relativa , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo
4.
J Immunol ; 185(3): 1616-21, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20610646

RESUMEN

Genome-wide linkage analysis using single nucleotide polymorphism arrays was carried out in pedigrees of mice differing in the extent of acute inflammatory response (AIRmax or AIRmin). The AIR phenotype was determined by quantifying the number of infiltrating cells in the 24-h exudate induced by Biogel P-100 s.c. injection and by ex vivo IL-1beta production by leukocytes stimulated with LPS and ATP. We mapped the major inflammatory response modulator 1 locus on chromosome 7, at the 1-logarithm of odds (LOD) confidence interval from 116.75 to 139.75 Mb, linked to the number of infiltrating cells (LOD = 3.61) through the production of IL-1beta (LOD = 9.35). Of several interesting candidate genes mapping to the inflammatory response modulator 1 locus, 28 of these were differentially expressed in the bone marrow of AIRmax and AIRmin mice. These findings represent a step toward the identification of the genes underlying this complex phenotype.


Asunto(s)
Sitios Genéticos/inmunología , Mediadores de Inflamación/fisiología , Interleucina-1beta/biosíntesis , Interleucina-1beta/genética , Enfermedad Aguda , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Mapeo Cromosómico , Cruzamientos Genéticos , Femenino , Regulación de la Expresión Génica/inmunología , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Interleucina-1beta/fisiología , Escala de Lod , Masculino , Ratones , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/inmunología
5.
Front Immunol ; 13: 899569, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35799794

RESUMEN

We identified Pycard and BC017158 genes as putative effectors of the Quantitative Trait locus (QTL) that we mapped at distal chromosome 7 named Irm1 for Inflammatory response modulator 1, controlling acute inflammatory response (AIR) and the production of IL-1ß, dependent on the activation of the NLRP3 inflammasome. We obtained the mapping through genome-wide linkage analysis of Single Nucleotide Polymorphisms (SNPs) in a cross between High (AIRmax) and Low (AIRmin) responder mouse lines that we produced by several generations of bidirectional selection for Acute Inflammatory Response. A highly significant linkage signal (LOD score peak of 72) for ex vivo IL-1ß production limited a 4 Mbp interval to chromosome 7. Sequencing of the locus region revealed 14 SNPs between "High" and "Low" responders that narrowed the locus to a 420 Kb interval. Variants were detected in non-coding regions of Itgam, Rgs10 and BC017158 genes and at the first exon of Pycard gene, resulting in an E19K substitution in the protein ASC (apoptosis associated speck-like protein containing a CARD) an adaptor molecule in the inflammasome complex. Silencing of BC017158 inhibited IL1-ß production by stimulated macrophages and the E19K ASC mutation carried by AIRmin mice impaired the ex vivo IL-1ß response and the formation of ASC specks in stimulated cells. IL-1ß and ASC specks play major roles in inflammatory reactions and in inflammation-related diseases. Our results delineate a novel genetic factor and a molecular mechanism affecting the acute inflammatory response.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Inflamasomas , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Ligamiento Genético , Inflamasomas/genética , Inflamasomas/metabolismo , Inflamación/genética , Inflamación/metabolismo , Ratones , Sitios de Carácter Cuantitativo
6.
J Immunol Res ; 2019: 5298792, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31049358

RESUMEN

AIRmax and AIRmin mouse strains phenotypically selected for high and low acute inflammatory responsiveness (AIR) are, respectively, susceptible or resistant to developing hepatocellular carcinoma (HCC) induced by the chemical carcinogens urethane and diethylnitrosamine (DEN). Early production of TNF-α, IL-1ß, and IL-6 in the liver after DEN treatment correlated with tumor development in AIRmax mice. Transcriptome analysis of livers from untreated AIRmax and AIRmin mice showed specific gene expression profiles in each line, which might play a role in their differential susceptibility to HCC. Linkage analysis with SNP markers in F2 (AIRmax×AIRmin) intercross mice revealed two quantitative trait loci (QTL) in chromosomes 2 and 9, which are significantly associated with the number and progression of urethane-induced liver tumors. An independent linkage analysis with an intercross population from A/J and C57BL/6J inbred mice mapped regions in chromosomes 1 and 7 associated with the progression of urethane-induced liver tumors, evidencing the heterogeneity of HCC genetic control.


Asunto(s)
Animales no Consanguíneos , Carcinoma Hepatocelular/genética , Predisposición Genética a la Enfermedad , Inflamación/inmunología , Neoplasias Hepáticas/genética , Alelos , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/inmunología , Modelos Animales de Enfermedad , Ligamiento Genético , Endogamia , Inflamación/genética , Interleucina-1beta/genética , Interleucina-6/genética , Neoplasias Hepáticas/inmunología , Ratones , Ratones Endogámicos C57BL , Fenotipo , Sitios de Carácter Cuantitativo , Transcriptoma , Factores de Necrosis Tumoral/genética
7.
PLoS One ; 8(6): e65674, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23799034

RESUMEN

It is well established that female sex hormones have a pivotal role in inflammation. For instance, our group has previously reported that estradiol has proinflammatory actions during allergic lung response in animal models. Based on these findings, we have decided to further investigate whether T regulatory cells are affected by female sex hormones absence after ovariectomy. We evaluated by flow cytometry the frequencies of CD4(+)Foxp3(+) T regulatory cells (Tregs) in central and peripheral lymphoid organs, such as the thymus, spleen and lymph nodes. Moreover, we have also used the murine model of allergic lung inflammation a to evaluate how female sex hormones would affect the immune response in vivo. To address that, ovariectomized or sham operated female Balb/c mice were sensitized or not with ovalbumin 7 and 14 days later and subsequently challenged twice by aerosolized ovalbumin on day 21. Besides the frequency of CD4(+)Foxp3(+) T regulatory cells, we also measured the cytokines IL-4, IL-5, IL-10, IL-13 and IL-17 in the bronchoalveolar lavage from lungs of ovalbumine challenged groups. Our results demonstrate that the absence of female sex hormones after ovariectomy is able to increase the frequency of Tregs in the periphery. As we did not observe differences in the thymus-derived natural occurring Tregs, our data may indicate expansion or conversion of peripheral adaptive Tregs. In accordance with Treg suppressive activity, ovariectomized and ovalbumine-sensitized and challenged animals had significantly reduced lung inflammation. This was observed after cytokine analysis of lung explants showing significant reduction of pro-inflammatory cytokines, such as IL-4, IL-5, IL-13 and IL-17, associated to increased amount of IL-10. In summary, our data clearly demonstrates that OVA sensitization 7 days after ovariectomy culminates in reduced lung inflammation, which may be directly correlated with the expansion of Tregs in the periphery and further higher IL-10 secretion in the lungs.


Asunto(s)
Antígenos CD4/inmunología , Factores de Transcripción Forkhead/inmunología , Ovalbúmina/administración & dosificación , Ovariectomía , Linfocitos T Reguladores/inmunología , Animales , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Femenino , Citometría de Flujo , Hormonas Esteroides Gonadales/fisiología , Hipersensibilidad/inmunología , Pulmón/inmunología , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos BALB C , Bazo/inmunología
8.
Immunology ; 120(3): 372-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17163963

RESUMEN

Strains of mice with maximal and minimal acute inflammatory responsiveness (AIRmax and AIRmin, respectively) were developed through selective breeding based on their high- or low-acute inflammatory responsiveness. Previous reports have shown that AIRmax mice are more resistant to the development of a variety of tumours than AIRmin mice, including spontaneous metastasis of murine melanoma. Natural killer activity is involved in immunosurveillance against tumour development, so we analysed the number and activity of natural killer cells (CD49b(+)), T-lymphocyte subsets and in vitro cytokine production by spleen cells of normal AIRmax and AIRmin mice. Analysis of lymphocyte subsets by flow cytometry showed that AIRmax mice had a higher relative number of CD49b(+) cells than AIRmin mice, as well as cytolytic activity against Yac.1 target cells. The number of CD3(+) CD8(+) cells was also higher in AIRmax mice. These findings were associated with the ability of spleen cells from AIRmax mice in vitro to produce higher levels of the pro-inflammatory cytokines tumour necrosis factor-alpha, interleukin-12p40 and interferon-gamma but not the anti-inflammatory interleukin-10. Taken together, our data suggest that the selective breeding to achieve the AIRmax and AIRmin strains was able to polarize the genes associated with cytotoxic activity, which can be responsible for the antitumour resistance observed in AIRmax mice.


Asunto(s)
Citocinas/biosíntesis , Mediadores de Inflamación/metabolismo , Inflamación/inmunología , Células Asesinas Naturales/inmunología , Enfermedad Aguda , Animales , Citotoxicidad Inmunológica/genética , Citotoxicidad Inmunológica/inmunología , Femenino , Predisposición Genética a la Enfermedad , Inmunidad Innata/genética , Inmunofenotipificación , Inflamación/genética , Masculino , Ratones , Selección Genética , Especificidad de la Especie , Bazo/inmunología , Subgrupos de Linfocitos T/inmunología
9.
Carcinogenesis ; 27(8): 1517-25, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16774945

RESUMEN

Mouse lines produced by bidirectional selection on the basis of maximum (AIRmax) or minimum (AIRmin) acute inflammatory reactions were examined for the development of chemically induced acute colitis and colon tumors and the development of lung tumors. AIRmax mice were more susceptible than AIRmin to acute colitis induced by ingestion of dextran sodium sulfate showing a 3-fold higher disease activity index and presenting an intense inflammatory infiltrate in the base of colon crypts as well as elevated expression of IL-1beta, TNFalpha, IFNgamma and IL-6 mRNA in colon tissue. AIRmax were also more susceptible than AIRmin to colon cancer induced by 2 or 7 weekly doses of 1,2-dimethylhydrazine (DMH), showing significantly higher numbers of colonic aberrant crypt foci (ACF) at 150 days after DMH treatment (P = 0.01) and significantly higher numbers of tumors affecting larger intestinal areas at 300-475 days. At the latter time point, however, multiple lung adenomas and large adenocarcinomas were found in AIRmin but not in AIRmax mice. Treatment of mice with nimesulide for 60 days beginning 24 h before the first of two DMH doses almost completely inhibited the appearance of ACF in both lines. Furthermore, ACF numbers and the degree of acute inflammation directly co-segregated in an F2 (AIRmax x AIRmin) intercross population. The results demonstrate that genetic determinants of the inflammatory response differentially influence susceptibility to colon and lung carcinogenesis in the AIRmax and AIRmin mouse model.


Asunto(s)
Transformación Celular Neoplásica , Colitis/genética , Neoplasias del Colon/genética , Predisposición Genética a la Enfermedad/genética , Inmunidad Celular/genética , Inflamación/genética , Neoplasias Pulmonares/genética , 1,2-Dimetilhidrazina/toxicidad , Enfermedad Aguda , Adenocarcinoma/inducido químicamente , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Adenoma/inducido químicamente , Adenoma/genética , Adenoma/inmunología , Animales , Antivirales/toxicidad , Carcinógenos/toxicidad , Células Cultivadas , Colitis/inducido químicamente , Colitis/inmunología , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/inmunología , Cruzamientos Genéticos , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Inflamación/inducido químicamente , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/inmunología , Ratones , Ratones Endogámicos
10.
São Paulo; SES/SP;Instituto Butantan; 2010. 164 p. ilus, tab.
Monografía en Portugués | LILACS, SES-SP, SES SP - Publicações científico-técnicas, SES-SP, SESSP-ACVSES | ID: lil-580172
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA