RESUMEN
The emergence of bacterial resistance has triggered a multitude of efforts to develop new antibacterial agents. There are many compounds in literature that were reported as potent antibacterial agents, however, they lacked the required safety to mammalian cells or no clear picture about their toxicity profile was presented. Inspired by discovered hit from our in-house library and by previously reported 2,4-diaminosubstituted quinazolines, we describe the design and synthesis of novel 2,4-disubstituted-thioquinazolines (3-13 and 36), 2-thio-4-amino substituted quinazolines (14-33) and 6-substituted 2,4-diamonsubstituted quinazolines (37-39). The synthesized compounds showed potent antibacterial activity against a panel of Gram-positive, efflux deficient E.coli and Mycobacterium smegmatis. The panel also involved resistant strains including methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, vancomycin-resistant Enterococcus faecalis and vancomycin-resistant Enterococcus faecium, in addition to Mycobacterium smegmatis. The newly synthesized compounds revealed MIC values against the tested strains ranging from 1 to 64 µg/mL with a good safety profile. Most of the 2-thio-4-amino substituted-quinazolines showed significant antimycobacterial activity with the variations at position 2 and 4 offering additional antibacterial activity against the different strains. Compared to previously reported 2,4-diaminosubstituted quinazolines, the bioisosteric replacement of the 2-amino with sulfur offered a successful approach to keep the high antibacterial potency while substantially improving safety profile as indicated by the reduced activity on different cell lines and a lack of hemolytic activity.
Asunto(s)
Antibacterianos/farmacología , Quinazolinas/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Células CHO , Supervivencia Celular/efectos de los fármacos , Cricetulus , Relación Dosis-Respuesta a Droga , Enterococcus faecalis/efectos de los fármacos , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium smegmatis/efectos de los fármacos , Quinazolinas/síntesis química , Quinazolinas/química , Staphylococcus aureus/efectos de los fármacos , Streptococcus pneumoniae/efectos de los fármacos , Relación Estructura-ActividadRESUMEN
Marine natural products have achieved great success as an important source of new lead compounds for drug discovery. The Red Sea provides enormous diversity on the biological scale in all domains of life including micro- and macro-organisms. In this review, which covers the literature to the end of 2019, we summarize the diversity of bioactive secondary metabolites derived from Red Sea micro- and macro-organisms, and discuss their biological potential whenever applicable. Moreover, the diversity of the Red Sea organisms is highlighted as well as their genomic potential. This review is a comprehensive study that compares the natural products recovered from the Red Sea in terms of ecological role and pharmacological activities.
Asunto(s)
Organismos Acuáticos/metabolismo , Productos Biológicos/farmacología , Animales , Organismos Acuáticos/genética , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Humanos , Océano Índico , Metagenómica , Metabolismo SecundarioRESUMEN
A clean way to overcome environmental pollution is biodegradation. In this perspective, at the intersection of biodegradation and metagenomics, the degradome is defined as the totality of genes related to the biodegradation of a certain compound. It includes the genetic elements from both culturable and uncultured microorganisms. The possibility of assessing the biodegradation potential of an environmental samples, using a degradome-based polymerase chain reaction, was explored. 2,4-Dichlorophenol (2,4-DCP) was chosen as a model and the use of tfdB gene as a biodegradation marker was confirmed by bioinformatics study of TfdB protein. Five primer pairs were designed for the detection of different tfdB gene families. A total of 16 environmental samples were collected from Egyptian agricultural soils and wastewaters and tested for the presence of 2,4-DCP. The biodegradation capacity of 2,4-DCP was determined, for all isolated consortia, to reach up to 350 mg/l. Metagenomic DNA was extracted directly from the soil samples while successive 2,4-DCP-degrading microbial communities were enriched, with increasing concentrations of 2,4-DCP, then their DNA was extracted. The extracted DNA was tested for the distribution of the tfdB gene using a degradome-based polymerase chain reaction. tfdB-1 and tfdB-2 were detected in 5 and 9 samples, respectively. However, the co-existence of both genes was detected only in five samples. All tfdB positive samples were capable of 2,4-DCP degradation. The developed approach of assessing the potential of different environments for degrading 2,4-DCP was successfully measured in terms of accuracy (81.25%) and specificity (100%).
Asunto(s)
Clorofenoles/metabolismo , Contaminantes Ambientales/metabolismo , Redes y Vías Metabólicas , Oxigenasas de Función Mixta/análisis , Reacción en Cadena de la Polimerasa/métodos , Microbiología del Suelo , Biotransformación , Egipto , Metagenómica/métodos , Oxigenasas de Función Mixta/genéticaRESUMEN
Humanized hemato-lymphoid system mice, or humanized mice, emerged in recent years as a promising model to study the course of infection of human-adapted or human-specific pathogens. Though Staphylococcus aureus infects and colonizes a variety of species, it has nonetheless become one of the most successful human pathogens of our time with a wide armory of human-adapted virulence factors. Humanized mice showed increased vulnerability to S. aureus compared to wild type mice in a variety of clinically relevant disease models. Most of these studies employed humanized NSG (NOD-scid IL2Rgnull) mice which are widely used in the scientific community, but show poor human myeloid cell reconstitution. Since this immune cell compartment plays a decisive role in the defense of the human immune system against S. aureus, we asked whether next-generation humanized mice, like NSG-SGM3 (NOD-scid IL2Rgnull-3/GM/SF) with improved myeloid reconstitution, would prove to be more resistant to infection. To our surprise, we found the contrary when we infected humanized NSG-SGM3 (huSGM3) mice with S. aureus: although they had stronger human immune cell engraftment than humanized NSG mice, particularly in the myeloid compartment, they displayed even more pronounced vulnerability to S. aureus infection. HuSGM3 mice had overall higher numbers of human T cells, B cells, neutrophils and monocytes in the blood and the spleen. This was accompanied by elevated levels of pro-inflammatory human cytokines in the blood of huSGM3 mice. We further identified that the impaired survival of huSGM3 mice was not linked to higher bacterial burden nor to differences in the murine immune cell repertoire. Conversely, we could demonstrate a correlation of the rate of humanization and the severity of infection. Collectively, this study suggests a detrimental effect of the human immune system in humanized mice upon encounter with S. aureus which might help to guide future therapy approaches and analysis of virulence mechanisms.
Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Ratones , Humanos , Animales , Ratones Endogámicos NOD , Citocinas , Neutrófilos , Ratones NoqueadosRESUMEN
Old yellow enzymes (OYEs) are widely found in the bacterial, fungal, and plant kingdoms but absent in humans and have been used as biocatalysts for decades. However, OYEs' physiological function in bacterial stress response and infection situations remained enigmatic. As a pathogen, the Gram-positive bacterium Staphylococcus aureus adapts to numerous stress conditions during pathogenesis. Here, we show that in S. aureus genome, two paralogous genes (ofrA and ofrB) encode for two OYEs. We conducted a bioinformatic analysis and found that ofrA is conserved among all publicly available representative staphylococcal genomes and some Firmicutes. Expression of ofrA is induced by electrophilic, oxidative, and hypochlorite stress in S. aureus. Furthermore, ofrA contributes to S. aureus survival against reactive electrophilic, oxygen, and chlorine species (RES, ROS, and RCS) via thiol-dependent redox homeostasis. At the host-pathogen interface, S. aureusΔofrA has defective survival in macrophages and whole human blood and decreased staphyloxanthin production. Overall, our results shed the light onto a novel stress response strategy in the important human pathogen S. aureus.
RESUMEN
Serine/threonine kinase PknB and its corresponding phosphatase Stp are important regulators of many cell functions in the pathogen S. aureus. Genome-scale gene expression data of S. aureus strain NewHG (sigB+) elucidated their effect on physiological functions. Moreover, metabolic modelling from these data inferred metabolic adaptations. We compared wild-type to deletion strains lacking pknB, stp or both. Ser/Thr phosphorylation of target proteins by PknB switched amino acid catabolism off and gluconeogenesis on to provide the cell with sufficient components. We revealed a significant impact of PknB and Stp on peptidoglycan, nucleotide and aromatic amino acid synthesis, as well as catabolism involving aspartate transaminase. Moreover, pyrimidine synthesis was dramatically impaired by stp deletion but only slightly by functional loss of PknB. In double knockouts, higher activity concerned genes involved in peptidoglycan, purine and aromatic amino acid synthesis from glucose but lower activity of pyrimidine synthesis from glucose compared to the wild type. A second transcriptome dataset from S. aureus NCTC 8325 (sigB-) validated the predictions. For this metabolic adaptation, PknB was found to interact with CdaA and the yvcK/glmR regulon. The involved GlmR structure and the GlmS riboswitch were modelled. Furthermore, PknB phosphorylation lowered the expression of many virulence factors, and the study shed light on S. aureus infection processes.
RESUMEN
The synthesis and characterization of two new sets of arylsulfonehydrazone benzenesulfonamides (4a-4i with phenyl tail and 4j-4q with tolyl tail) are reported. The compounds were designed according to a dual-tails approach to modulate the interactions of the ligands portions at the outer rim of both hydrophobic and hydrophilic active site halves of human isoforms of carbonic anhydrase (CA, EC 4.2.1.1). The synthesized sulfonamides were evaluated in vitro for their inhibitory activity against the following human (h) isoforms, hCA I, II, IV and IX. With the latter being a validated anticancer drug target and a marker of tumor hypoxia, attractive results arose from the Compounds' inhibitory screening in terms of potency and selectivity. Indeed, whereas the first subset of compounds 4a-4i exhibited great efficacy in inhibiting both the ubiquitous, off-target hCA II (KIs 9.5-172.0â¯nM) and hCA IX (KIs 7.5-131.5â¯nM), the second subset of tolyl-bearing derivatives 4j-4q were shown to possess a selective hCA IX inhibitory action over isoforms I, II and IV. The most selective compounds 4l and 4n were further screened for their in vitro cytotoxic activity against MCF-7 and MDA-MB-231 cancer cell lines under hypoxic conditions. The selective IX/II inhibitory trend of 4j-4q compared to those of compounds 4a-4i was unveiled by docking studies. Further exploration of these molecules could be useful for the development of novel antitumor agents with a selective CA inhibitory mechanism.
Asunto(s)
Antineoplásicos/farmacología , Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Sulfonamidas/farmacología , Sulfonas/farmacología , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Células MCF-7 , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Sulfonas/química , BencenosulfonamidasRESUMEN
The amino acid content of the proteins encoded by a genome may predict the coding potential of that genome and may reflect lifestyle restrictions of the organism. Here, we calculated the Kullback-Leibler divergence from the mean amino acid content as a metric to compare the amino acid composition for a large set of bacterial and phage genome sequences. Using these data, we demonstrate that (i) there is a significant difference between amino acid utilization in different phylogenetic groups of bacteria and phages; (ii) many of the bacteria with the most skewed amino acid utilization profiles, or the bacteria that host phages with the most skewed profiles, are endosymbionts or parasites; (iii) the skews in the distribution are not restricted to certain metabolic processes but are common across all bacterial genomic subsystems; (iv) amino acid utilization profiles strongly correlate with GC content in bacterial genomes but very weakly correlate with the G+C percent in phage genomes. These findings might be exploited to distinguish coding from non-coding sequences in large data sets, such as metagenomic sequence libraries, to help in prioritizing subsequent analyses.