Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(6): e18161, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38445787

RESUMEN

Cisplatin is an antimitotic drug able to cause acute and chronic gastrointestinal side effects. Acute side effects are attributable to mucositis while chronic ones are due to neuropathy. Cisplatin has also antibiotic properties inducing dysbiosis which enhances the inflammatory response, worsening local damage. Thus, a treatment aimed at protecting the microbiota could prevent or reduce the toxicity of chemotherapy. Furthermore, since a healthy microbiota enhances the effects of some chemotherapeutic drugs, prebiotics could also improve this drug effectiveness. We investigated whether chronic cisplatin administration determined morphological and functional alterations in mouse proximal colon and whether a diet enriched in prebiotics had protective effects. The results showed that cisplatin caused lack of weight gain, increase in kaolin intake, decrease in stool production and mucus secretion. Prebiotics prevented increases in kaolin intake, changes in stool production and mucus secretion, but had no effect on the lack of weight gain. Moreover, cisplatin determined a reduction in amplitude of spontaneous muscular contractions and of Connexin (Cx)43 expression in the interstitial cells of Cajal, changes that were partially prevented by prebiotics. In conclusion, the present study shows that daily administration of prebiotics, likely protecting the microbiota, prevents most of the colonic cisplatin-induced alterations.


Asunto(s)
Cisplatino , Prebióticos , Animales , Ratones , Cisplatino/efectos adversos , Caolín , Aumento de Peso , Colon
2.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G187-G194, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38111974

RESUMEN

Adiponectin (ADPN) has been reported to induce inhibitory effects on gastric motor activity, which, being a source of peripheral satiety signals, would contribute to the central anorexigenic effects of the hormone in rodents. However, peripheral satiety signals can also originate from the small intestine. Since there are no data on the effects of ADPN in this gut region, the present study aimed to investigate whether ADPN affects murine ileal contractility. Immunofluorescence experiments and Western blot were also performed to reveal the expression of ADPN receptors. Mechanical responses of ileal preparations were recorded in vitro via force-displacement transducers. Preparations showed a tetrodotoxin- and atropine-insensitive spontaneous contractile activity. Electrical field stimulation (EFS) induced tetrodotoxin- and atropine-sensitive contractile responses. ADPN induced a decay of the basal tension and decreased the amplitude of either the spontaneous contractility or the EFS-induced excitatory responses. All ADPN effects were abolished by the nitric oxide (NO) synthesis inhibitor NG-nitro l-arginine. The expression of the ADPN receptor, AdipoR1, but not AdipoR2, was also revealed in enteric glial cells. The present results offer the first evidence that ADPN acts on ileal preparations. The hormone exerts inhibitory effects, likely involving AdipoR1 on enteric glial cells and NO. From a physiological point of view, it could be hypothesized that the depressant action of ADPN on ileal contractility represents an additional peripheral satiety signal which, as also described for the ileal brake, could contribute to the central anorexigenic effects of the hormone.NEW & NOTEWORTHY This study provides the first evidence that adiponectin (ADPN) is able to act on ileal preparations. Functional results demonstrate that the hormone, other than causing a slight decay of the basal tension, depresses the amplitude of both spontaneous contractility and neurally induced excitatory responses of the mouse ileum through the involvement of nitric oxide. The expression of the ADPN receptor AdipoR1 and its localization on glial cells was revealed by Western blot and immunofluorescence analysis.


Asunto(s)
Adiponectina , Óxido Nítrico , Animales , Ratones , Adiponectina/farmacología , Atropina/farmacología , Íleon/metabolismo , Contracción Muscular/fisiología , Óxido Nítrico/metabolismo , Tetrodotoxina/farmacología
3.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339131

RESUMEN

Glucagon-like peptide-2 (GLP-2) has been reported to influence gastrointestinal motor responses, exerting a modulatory role on enteric neurotransmission. To our knowledge, no data on GLP-2 effects on the motility of the isolated ileum are available; therefore, we investigated whether GLP-2 affects the contractile activity of mouse ileal preparations and the neurotransmitters engaged. Ileal preparations showed tetrodotoxin (TTX)- and atropine-insensitive spontaneous contractile activity, which was unaffected by the nitric oxide synthesis inhibitor, L-NNA. GLP-2 depressed the spontaneous contractility, an effect that was abolished by TTX or L-NNA and not influenced by atropine. Electrical field stimulation induced TTX- and atropine-sensitive contractile responses, which were reduced in amplitude by GLP-2 even in the presence of L-NNA. Immunohistochemical results showed a significant increase in nNOS-positive fibers in the ileal muscle wall and a significant decrease in ChAT-positive myenteric neurons in GLP-2-exposed preparations. The present results offer the first evidence that GLP-2 acts on ileal preparations. The hormone appears to depress ileal contractility through a dual opposite modulatory effect on inhibitory nitrergic and excitatory cholinergic neurotransmission. From a physiological point of view, it could be hypothesized that GLP-2 inhibitory actions on ileal contractility can increase transit time, facilitating nutrient absorption.


Asunto(s)
Péptido 2 Similar al Glucagón , Transmisión Sináptica , Ratones , Animales , Contracción Muscular/fisiología , Nitroarginina/farmacología , Íleon , Colinérgicos/farmacología , Derivados de Atropina/farmacología , Estimulación Eléctrica
4.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108603

RESUMEN

Irritable Bowel syndrome (IBS) is a highly widespread gastrointestinal disorder whose symptomatology mainly affect the large intestine. Among the risk factors, psychosocial stress is the most acknowledged. The repeated water avoidance stress (rWAS) is considered an animal model of psychosocial stress that is capable of mimicking IBS. Otilonium bromide (OB), which is orally administered, concentrates in the large bowel and controls most of the IBS symptoms in humans. Several reports have shown that OB has multiple mechanisms of action and cellular targets. We investigated whether the application of rWAS to rats induced morphological and functional alterations of the cholinergic neurotransmission in the distal colon and whether OB prevented them. The results demonstrated that rWAS affects cholinergic neurotransmission by causing an increase in acid mucin secretion, in the amplitude of electrically evoked contractile responses, abolished by atropine, and in the number of myenteric neurons expressing choline acetyltransferase. OB counteracted these changes and also showed an intrinsic antimuscarinic effect on the post-synaptic muscular receptors. We assume that the rWAS consequences on the cholinergic system are linked to corticotrophin-releasing factor-1 (CRF1) receptor activation by the CRF hypothalamic hormone. OB, by interfering with the CFR/CRFr activation, interrupted the cascade events responsible for the changes affecting the rWAS rat colon.


Asunto(s)
Síndrome del Colon Irritable , Humanos , Ratas , Animales , Colon , Antagonistas Muscarínicos/farmacología , Receptores de Hormona Liberadora de Corticotropina , Agua/farmacología
5.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674598

RESUMEN

Adiponectin (ADPN), a hormone produced by adipose tissue, facilitates gastric relaxation and can be a satiety signal in the network connecting peripheral organs and the central nervous system for feeding behavior control. Here, we performed preclinical research by morpho-functional analyses on murine gastric fundus smooth muscle to add insights into the molecular mechanisms underpinning ADPN action. Moreover, we conducted a clinical study to evaluate the potential use of ADPN as a biomarker for eating disorders (ED) based on the demonstrated gastric alterations and hormone level fluctuations that are often associated with ED. The clinical study recruited patients with ED and healthy controls who underwent blood draws for ADPN dosage and psychopathology evaluation tests. The findings of this basic research support the ADPN relaxant action, as indicated by the smooth muscle cell membrane pro-relaxant effects, with mild modifications of contractile apparatus and slight inhibitory effects on gap junctions. All of these actions engaged the ADPN/nitric oxide/guanylate cyclase pathway. The clinical data failed to unravel a correlation between ADPN levels and the considered ED, thus negating the potential use of ADPN as a valid biomarker for ED management for the moment. Nevertheless, this adipokine can modulate physiological eating behavior, and its effects deserve further investigation.


Asunto(s)
Adiponectina , Fundus Gástrico , Humanos , Animales , Ratones , Adiponectina/metabolismo , Tejido Adiposo/metabolismo , Músculo Liso/metabolismo , Biomarcadores/metabolismo
6.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36555750

RESUMEN

It has been reported that adiponectin (ADPN) and resistin are co-secreted by white mouse adipocytes and exert similar inhibitory effects in the mouse gastric fundus, in which resistin was observed to increase neuronal nitric oxide synthase (nNOS) expression. On these grounds, the present work aimed to investigate whether the effects of the two adipokines on the neurally-induced relaxant responses potentiate each other and whether there is a possible correlation with changes in nNOS expression in preparations from the mouse gastric fundus. In carbachol (CCh)-precontracted strips, electrical field stimulation elicited nitrergic relaxant responses, whose amplitude was increased by ADPN or resistin, but no additional enhancements were observed in their concomitant presence. Western blot and immunofluorescence analyses revealed that ADPN, like resistin, was able to up-regulate nNOS expression and to increase the percentage of nNOS-positive neurons in the myenteric plexus: co-treatment with the two adipokines did not induce additional changes. The results indicate that the two adipokines modulate nitrergic neurotransmission, and both do so by up-regulating nNOS expression. Therefore, nNOS appears to be a shared target for the two adipokines' effects, which, rather than mutually reinforcing each other, may represent a dual physiological control mechanism to guarantee gastric fundus relaxation.


Asunto(s)
Fundus Gástrico , Contracción Muscular , Ratones , Animales , Contracción Muscular/fisiología , Relajación Muscular , Adiponectina/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Resistina/farmacología , Óxido Nítrico/metabolismo
7.
J Cell Mol Med ; 25(14): 6988-7000, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34109728

RESUMEN

Irritable bowel syndrome (IBS) is a highly prevalent gastrointestinal disorder characterized by periods of remission and exacerbation. Among the risk factors to develop IBS, psychosocial stress is widely acknowledged. The water avoidance stress repeatedly applied (rWAS) is considered effective to study IBS etio-pathogenesis. Otilonium bromide (OB), a drug with multiple mechanisms of action, is largely used to treat IBS patients. Orally administered, it concentrates in the large bowel and significantly ameliorates the IBS symptomatology. Presently, we tested whether rWAS rats developed neuro-muscular abnormalities in the distal colon and whether OB treatment prevented them. The investigation was focussed on the nitrergic neurotransmission by combining functional and morphological methodologies. The results confirm rWAS as reliable animal model to investigate the cellular mechanisms responsible for IBS: exposure to one-hour psychosocial stress for 10 days depressed muscle contractility and increased iNOS expression in myenteric neurons. OB treatment counteracted these effects. We hypothesize that these effects are due to the corticotropin-releasing factor (CRF) release, the main mediator of the psychosocial stress, followed by a CRF1receptor activation. OB, that was shown to prevent CRF1r activation, reasonably interrupted the cascade events that bring to the mechanical and immunohistochemical changes affecting rWAS rat colon.


Asunto(s)
Colon/efectos de los fármacos , Fármacos Gastrointestinales/uso terapéutico , Síndrome del Colon Irritable/tratamiento farmacológico , Óxido Nítrico/metabolismo , Compuestos de Amonio Cuaternario/uso terapéutico , Estrés Psicológico/metabolismo , Animales , Colon/metabolismo , Colon/patología , Hormona Liberadora de Corticotropina/metabolismo , Fármacos Gastrointestinales/administración & dosificación , Fármacos Gastrointestinales/farmacología , Síndrome del Colon Irritable/etiología , Síndrome del Colon Irritable/metabolismo , Masculino , Óxido Nítrico Sintasa de Tipo II/metabolismo , Compuestos de Amonio Cuaternario/administración & dosificación , Compuestos de Amonio Cuaternario/farmacología , Ratas , Ratas Wistar , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Estrés Psicológico/complicaciones
8.
Mol Cell Biochem ; 476(8): 3111-3126, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33837873

RESUMEN

The widespread environmental pollutant 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) is a non-dioxin-like toxicant. It is a potential carcinogen compound able to induce gap junction (GJ) intercellular communication impairment, probably the first non-genomic event leading to tumor promotion. Although PCBs have been known for many years, the molecular mode of PCB153 action is still unclear. Recent studies from our research group have shown that the toxicant elicits a transient modulation of connexin (Cx) 43-formed GJs in hepatic stem-like WB-F344 cells involving sphingosine 1-phosphate (S1P) path. Taking into account that other strictly related bioactive sphingolipids, such as ceramide (Cer), may have different effects from S1P, here we aim to clarify the signaling paths engaged by PCB153 in the control of GJs, focusing primarily on the role of Cer. Accordingly, we have achieved a combined biomolecular and electrophysiological analysis of GJs in cultured WB-F344 cells treated with PCB153 at different time points. We have found that the toxicant elicited a time-dependent regulation of GJs formed by different Cx isoforms, through a transient modulation of Cer/Cer kinase (CerK) axis and, in turn, of protein phosphatase 2A (PP2A). Our new findings demonstrate the existence of a specific molecular mechanism downstream to Cer, which distinctly affects the voltage-dependent and -independent GJs in liver stem-like cells, and open new opportunities for the identification of additional potential targets of these environmental toxicants.


Asunto(s)
Ceramidas/metabolismo , Uniones Comunicantes/patología , Hígado/patología , Bifenilos Policlorados/farmacología , Proteína Fosfatasa 2/metabolismo , Células Madre/patología , Animales , Comunicación Celular , Células Cultivadas , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteína Fosfatasa 2/genética , Ratas , Transducción de Señal , Células Madre/efectos de los fármacos , Células Madre/metabolismo
9.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576155

RESUMEN

It is known that nitric oxide (NO) plays a key physiological role in the control of gastrointestinal (GI) motor phenomena. In this respect, NO is considered as the main non-adrenergic, non-cholinergic (NANC) inhibitory neurotransmitter responsible for smooth muscle relaxation. Moreover, many substances (including hormones) have been reported to modulate NO production leading to changes in motor responses, further underlying the importance of this molecule in the control of GI motility. An impaired NO production/release has indeed been reported to be implicated in some GI dysmotility. In this article we wanted to focus on the influence of NO on gastric motility by summarizing knowledge regarding its role in both physiological and pathological conditions. The main role of NO on regulating gastric smooth muscle motor responses, with particular reference to NO synthases expression and signaling pathways, is discussed. A deeper knowledge of nitrergic mechanisms is important for a better understanding of their involvement in gastric pathophysiological conditions of hypo- or hyper-motility states and for future therapeutic approaches. A possible role of substances which, by interfering with NO production, could prove useful in managing such motor disorders has been advanced.


Asunto(s)
Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Animales , Motilidad Gastrointestinal/fisiología , Humanos , Contracción Muscular/fisiología , Relajación Muscular/fisiología , Neurotransmisores/metabolismo , Óxido Nítrico Sintasa/metabolismo , Transmisión Sináptica/fisiología
10.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807453

RESUMEN

Bone marrow-mesenchymal stem/stromal cells (MSCs) may offer promise for skeletal muscle repair/regeneration. Growing evidence suggests that the mechanisms underpinning the beneficial effects of such cells in muscle tissue reside in their ability to secrete bioactive molecules (secretome) with multiple actions. Hence, we examined the effects of MSC secretome as conditioned medium (MSC-CM) on ex vivo murine extensor digitorum longus muscle injured by forced eccentric contraction (EC). By combining morphological (light and confocal laser scanning microscopies) and electrophysiological analyses we demonstrated the capability of MSC-CM to attenuate EC-induced tissue structural damages and sarcolemnic functional properties' modifications. MSC-CM was effective in protecting myofibers from apoptosis, as suggested by a reduced expression of pro-apoptotic markers, cytochrome c and activated caspase-3, along with an increase in the expression of pro-survival AKT factor. Notably, MSC-CM also reduced the EC-induced tissue redistribution and extension of telocytes/CD34+ stromal cells, distinctive cells proposed to play a "nursing" role for the muscle resident myogenic satellite cells (SCs), regarded as the main players of regeneration. Moreover, it affected SC functionality likely contributing to replenishment of the SC reservoir. This study provides the necessary groundwork for further investigation of the effects of MSC secretome in the setting of skeletal muscle injury and regenerative medicine.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Animales , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Medicina Regenerativa/métodos , Células Satélite del Músculo Esquelético/metabolismo , Vesículas Secretoras/metabolismo , Células del Estroma/metabolismo , Células del Estroma/patología , Cicatrización de Heridas/efectos de los fármacos
11.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525436

RESUMEN

Skeletal muscle atrophy is characterized by a decrease in muscle mass causing reduced agility, increased fatigability and higher risk of bone fractures. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNFα), are strong inducers of skeletal muscle atrophy. The bioactive sphingolipid sphingosine 1-phoshate (S1P) plays an important role in skeletal muscle biology. S1P, generated by the phosphorylation of sphingosine catalyzed by sphingosine kinase (SK1/2), exerts most of its actions through its specific receptors, S1P1-5. Here, we provide experimental evidence that TNFα induces atrophy and autophagy in skeletal muscle C2C12 myotubes, modulating the expression of specific markers and both active and passive membrane electrophysiological properties. NMR-metabolomics provided a clear picture of the deep remodelling of skeletal muscle fibre metabolism induced by TNFα challenge. The cytokine is responsible for the modulation of S1P signalling axis, upregulating mRNA levels of S1P2 and S1P3 and downregulating those of SK2. TNFα increases the phosphorylated form of SK1, readout of its activation. Interestingly, pharmacological inhibition of SK1 and specific antagonism of S1P3 prevented the increase in autophagy markers and the changes in the electrophysiological properties of C2C12 myotubes without affecting metabolic remodelling induced by the cytokine, highlighting the involvement of S1P signalling axis on TNFα-induced atrophy in skeletal muscle.


Asunto(s)
Lisofosfolípidos/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Receptores de Esfingosina-1-Fosfato/genética , Esfingosina/análogos & derivados , Factor de Necrosis Tumoral alfa/farmacología , Animales , Diferenciación Celular , Línea Celular , Regulación de la Expresión Génica , Humanos , Metabolómica/métodos , Ratones , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Mioblastos/metabolismo , Mioblastos/patología , Técnicas de Placa-Clamp , Fosforilación/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
12.
Eur Eat Disord Rev ; 29(4): 588-599, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33939220

RESUMEN

OBJECTIVE: The recent conceptualization of ghrelin as a stress hormone suggested that its chronic alterations may have a role in maintaining overeating behaviors in subjects with eating disorders (EDs) reporting childhood traumatic experiences. The aim of this study was to investigate the alterations of ghrelin levels in patients with EDs, their associations with early trauma, binge and emotional eating, and possible moderation/mediation models. METHOD: Sixty-four patients with EDs and 42 healthy controls (HCs) had their plasma ghrelin levels measured and completed questionnaires evaluating general and ED-specific psychopathology, emotional eating, and childhood traumatic experiences. RESULTS: Participants with anorexia nervosa had higher ghrelin levels than HCs in body mass index (BMI)-adjusted comparisons. Moreover, patients reporting a history of childhood trauma had higher ghrelin levels. Childhood sexual abuse (CSA), BMI, and self-induced vomiting were independent predictors of ghrelin levels. Moderation analyses showed that ghrelin levels were associated with binge and emotional eating only for higher levels of childhood trauma. Elevated ghrelin was a significant mediator for the association of CSA with binge eating. CONCLUSIONS: These results support the hypothesis that chronic alterations in ghrelin levels following childhood traumatic experiences could represent a neurobiological maintaining factor of pathological overeating behaviors in EDs.


Asunto(s)
Trastorno por Atracón , Bulimia , Trastornos de Alimentación y de la Ingestión de Alimentos , Trastorno por Atracón/psicología , Biomarcadores , Bulimia/psicología , Ghrelina , Humanos
13.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348652

RESUMEN

Some adipokines, such as adiponectin (ADPN), other than being implicated in the central regulation of feeding behavior, may influence gastric motor responses, which are a source of peripheral signals that also influence food intake. The present study aims to elucidate the signaling pathways through which ADPN exerts its actions in the mouse gastric fundus. To this purpose, we used a multidisciplinary approach. The mechanical results showed that ADPN caused a decay of the strip basal tension, which was abolished by the nitric oxide (NO) synthesis inhibitor, L-NG-nitro arginine (L-NNA). The electrophysiological experiments confirmed that all ADPN effects were abolished by L-NNA, except for the reduction of Ca2+ current, which was instead prevented by the inhibitor of AMP-activated protein kinase (AMPK), dorsomorphin. The activation of the AMPK signaling by ADPN was confirmed by immunofluorescence analysis, which also revealed the ADPN R1 receptor (AdipoR1) expression in glial cells of the myenteric plexus. In conclusion, our results indicate that ADPN exerts an inhibitory action on the gastric smooth muscle by acting on AdipoR1 and involving the AMPK signaling pathway at the peripheral level. These findings provide novel bases for considering AMPK as a possible pharmacologic target for the potential treatment of obesity and eating disorders.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adiponectina/farmacología , Mucosa Gástrica/metabolismo , Músculo Liso/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Animales , Femenino , Fundus Gástrico/efectos de los fármacos , Fundus Gástrico/metabolismo , Mucosa Gástrica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Músculo Liso/efectos de los fármacos , Obesidad/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Receptores de Adiponectina/metabolismo
14.
Stem Cells ; 34(6): 1679-91, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26866833

RESUMEN

The potential therapeutic applications of targeting brown adipose tissue open new clinical avenues in fighting against metabolic pathologies. However, due to the limited extension in adult humans of brown depots, which are dramatically reduced after birth, solid cell models to study human brown adipogenesis and its regulatory factors in pathophysiology are urgently needed. Here, we generated a novel human model of brown adipose stem cells, hfB-ASC, derived for the first time from fetal interscapular brown fat depots. Besides the characterization of their stem and classical brown adipose properties, we demonstrated that these cells retain a specific intrinsic differentiation program to functional brown adipocytes, even spontaneously generating organoid structures with brown features. Moreover, for the first time, we investigated the thermogenic and electrophysiological activity of the in vitro-derived fetal brown adipocytes compared to their undifferentiated precursors hfB-ASC, in basal and norepinephrine-induced conditions. In conclusion, from interscapular brown fat of the human fetus we developed and functionally characterized a novel physiological brown adipose stem cell model early programmed to brown differentiation, which may represent a unique opportunity for further studies on brown adipogenesis processes in humans as well as the most suitable target to study novel therapeutic approaches for stimulating brown activity in metabolic pathologies. Stem Cells 2016;34:1679-1691.


Asunto(s)
Adipocitos Marrones/citología , Tejido Adiposo Pardo/citología , Células Madre Fetales/citología , Modelos Biológicos , Adulto , Diferenciación Celular , Linaje de la Célula , Separación Celular , Fenómenos Electrofisiológicos , Humanos , Células Madre Mesenquimatosas/citología , Organoides/citología , Fenotipo , Termografía
15.
Mol Cell Neurosci ; 75: 50-62, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27370937

RESUMEN

Over the past decades, studies in both Huntington's disease animal models and pilot clinical trials have demonstrated that replacement of degenerated striatum and repair of circuitries by grafting fetal striatal primordium is feasible, safe and may counteract disease progression. However, a better comprehension of striatal ontogenesis is required to assess the fetal graft regenerative potential. During neuronal development, neurotrophins exert pleiotropic actions in regulating cell fate and synaptic plasticity. In this regard, brain-derived neurotrophic factor (BDNF) and fibroblast growth factor 2 (FGF2) are crucially implicated in the control of fate choice of striatal progenitor cells. In this study, we intended to refine the functional features of human striatal precursor (HSP) cells isolated from ganglionic eminence of 9-12week old human fetuses, by studying with electrophysiological methods the effect of BDNF and FGF2 on the membrane biophysical properties and the voltage-dependent Ca(2+) currents. These features are particularly relevant to evaluate neuronal cell functioning and can be considered reliable markers of the developmental phenotype of human striatal primordium. Our results have demonstrated that BDNF and FGF2 induced membrane hyperpolarization, increased the membrane capacitance and reduced the resting total and specific conductance values, suggesting a more efficient control of resting ionic fluxes. Moreover, the treatment with both neurotrophins enhanced N-type Ca(2+) current amplitude and reduced L- and T-type ones. Overall, our data indicate that BDNF and FGF2 may help HSP cells to attain a more functionally mature phenotype.


Asunto(s)
Potenciales de Acción , Factor Neurotrófico Derivado del Encéfalo/farmacología , Canales de Calcio/metabolismo , Cuerpo Estriado/fisiología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Células-Madre Neurales/fisiología , Neurogénesis , Células Cultivadas , Cuerpo Estriado/citología , Cuerpo Estriado/embriología , Humanos , Células-Madre Neurales/efectos de los fármacos
16.
Exp Physiol ; 101(8): 1086-100, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27307205

RESUMEN

What is the central question of this study? Hyponatraemia, an electrolyte disorder encountered in hospitalized patients, can cause neurological symptoms usually attributed to a reduction in plasma osmolarity. Here, we investigated whether low [Na(+) ] per se can cause neuronal changes independent of osmolarity, focusing on involvement of the Na(+) -Ca(2+) exchanger. What is the main finding and its importance? We show that hyponatraemia per se causes alterations of neuronal properties. The novel finding of Na(+) -Ca(2+) exchanger involvement helps us to elucidate the volume regulation following hyponatraemia. This might have relevance in a translational perspective because Na(+) -Ca(2+) exchanger could be a target for novel therapies. Hyponatraemia is the most frequent electrolyte disorder encountered in hospitalized patients, and it can cause a wide variety of neurological symptoms. Most of the negative effects of this condition on neuronal cells are attributed to cell swelling because of the reduction of plasma osmolarity, although in hyponatraemia different membrane proteins are supposed to be involved in the conservation of neuronal volume. We have recently reported detrimental effects of hyponatraemia on two different neuronal cell lines, SK-N-AS and SH-SY5Y, independent of osmotic alterations. In this study we investigated, in the same cell lines, whether hyponatraemic conditions per se can cause electrophysiological alterations and whether these effects vary over time. Accordingly, we carried out experiments in low-sodium medium in either hyposmotic [Osm(-)] or isosmotic [Osm(+)] conditions, for a short (24 h) or long time (7 days). Using a patch pipette in voltage-clamp conditions, we recorded possible modifications of cell capacitance (Cm ) and membrane conductance (Gm ). Our results indicate that in both Osm(-) and Osm(+) medium, Cm and Gm show a similar increase, but such effects are dependent on the time in culture in different ways. Notably, regarding the possible mechanisms involved in the maintenance of Cm , Gm and Gm /Cm in Osm(+) conditions, we observed a greater contribution of the Na(+) -Ca(2+) exchanger compared with Osm(-) and control conditions. Overall, these novel electrophysiological results help us to understand the mechanisms of volume regulation after ionic perturbation. Our results might also have relevance in a translational perspective because the Na(+) -Ca(2+) exchanger can be considered a target for planning novel therapies.


Asunto(s)
Membrana Celular/fisiología , Hiponatremia/fisiopatología , Neuronas/fisiología , Calcio/metabolismo , Recuento de Células/métodos , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Humanos , Hiponatremia/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Níquel/farmacología , Concentración Osmolar , Técnicas de Placa-Clamp/métodos , Sodio/metabolismo , Intercambiador de Sodio-Calcio/metabolismo
17.
Lasers Surg Med ; 48(3): 318-32, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26660509

RESUMEN

BACKGROUND AND OBJECTIVE: Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. MATERIALS AND METHODS: NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-ß1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-ß1/Smad3 signaling was investigated. RESULTS: Diode laser treatment inhibited TGF-ß1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-ß1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-ß1 signaling, namely reducing the expression of Smad3, the TGF-ß1 downstream signaling molecule. CONCLUSION: Low intensity irradiation with 635 ± 5 nm diode laser inhibited TGF-ß1/Smad3-mediated fibroblast-myofibroblast transition and this effect involved the modulation of TRPC1 ion channels. These data contribute to support the potential anti-fibrotic effect of LLLT and may offer further informations for considering this therapy as a promising therapeutic tool for the treatment of tissue fibrosis.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Láseres de Semiconductores/uso terapéutico , Terapia por Luz de Baja Intensidad/métodos , Miofibroblastos/efectos de la radiación , Animales , Biomarcadores/metabolismo , Western Blotting , Diferenciación Celular/fisiología , Células Cultivadas , Fibroblastos/fisiología , Fibroblastos/efectos de la radiación , Fibrosis/metabolismo , Fibrosis/radioterapia , Ratones , Miofibroblastos/fisiología , Células 3T3 NIH , Técnicas de Placa-Clamp , Canales Catiónicos TRPC/metabolismo
18.
Exp Physiol ; 100(6): 652-66, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25786395

RESUMEN

NEW FINDINGS: What is the central question of this study? Fibroblast-to-myofibroblast transition is a key mechanism in the reparative response to tissue damage, but myofibroblast persistence in the wound leads to fibrosis and organ failure. The role of relaxin as an antifibrotic agent capable of counteracting the acquisition of biophysical features of differentiated myofibroblasts deserves further investigation. What is the main finding and its importance? Electrophysiological analysis showed that relaxin, administered during profibrotic treatment, hyperpolarizes the membrane potential and attenuates delayed rectifier and inwardly rectifying K(+) currents, which usually increase in the transition to myofibroblasts. These findings provide further clues to the therapeutic potential of relaxin in fibrosis. The hormone relaxin (RLX) is produced by the heart and may be involved in endogenous mechanisms of cardiac protection against ischaemic injury and fibrosis. Recent findings in cultured cardiac stromal cells suggest that RLX can inhibit fibroblast-to-myofibroblast transition, thereby counteracting fibrosis. In order to explore its efficiency as an antifibrotic agent further, we designed the present study to investigate whether RLX may influence the electrophysiological events associated with differentiation of cardiac stromal cells to myofibroblasts. Primary cardiac proto-myofibroblasts and NIH/3T3 fibroblasts were induced to myofibroblasts by transforming growth factor-ß1, and the electrophysiological features of both cell populations were investigated by whole-cell patch clamp. We demonstrated that proto-myofibroblasts and myofibroblasts express different membrane passive properties and K(+) currents. Here, we have shown, for the first time, that RLX (100 ng ml(-1) ) significantly reduced both voltage- and Ca(2+) -dependent delayed-rectifier and inward-rectifying K(+) currents that are typically increased in myofibroblasts compared with proto-myofibroblasts, suggesting that this hormone can antagonize the biophysical effects of transforming growth factor-ß1 in inducing myofibroblast differentiation. These newly recognized effects of RLX on the electrical properties of cardiac stromal cell membrane correlate well with its well-known ability to suppress myofibroblast differentiation, further supporting the possibility that RLX may be used for the treatment of cardiac fibrosis.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Miofibroblastos/efectos de los fármacos , Canales de Potasio de Rectificación Interna/metabolismo , Relaxina/farmacología , Animales , Biomarcadores/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Humanos , Potenciales de la Membrana , Ratones , Miofibroblastos/metabolismo , Miofibroblastos/patología , Células 3T3 NIH , Fenotipo , Potasio/metabolismo , Proteínas Recombinantes/farmacología , Factor de Crecimiento Transformador beta1/farmacología
19.
Curr Protein Pept Sci ; 23(2): 61-69, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35176986

RESUMEN

Glucagon-Like Peptide-2 (GLP-2) is a pleiotropic hormone that plays several roles in different organs and tissues, so being involved in many physiological processes. Among these, it regulates gastrointestinal (GI) tract function binding to a specific G-protein coupled receptor (GLP-2R). Of note, GLP-2R is widely expressed in different cells of the GI tract, including excitatory and inhibitory neurons of the enteric nervous system. In the gut, GLP-2 has been reported to play numerous actions, among which the modulation of motility. Nevertheless, most of the GLP-2 effects and its role in physiological processes are still debated. The aim of this minireview is to summarize the data present in the literature on the control of GI motility by GLP-2, the mechanism through which it occurs, and to discuss the physiological implications of such effects. A better understanding of the role of GLP-2 on GI motor responses may be of importance for the development of new therapeutic approaches in GI dysmotility.


Asunto(s)
Sistema Nervioso Entérico , Péptido 2 Similar al Glucagón , Sistema Nervioso Entérico/metabolismo , Motilidad Gastrointestinal , Tracto Gastrointestinal/metabolismo , Péptido 2 Similar al Glucagón/metabolismo , Péptido 2 Similar al Glucagón/farmacología , Receptores de Glucagón/metabolismo
20.
Front Physiol ; 13: 930197, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910552

RESUMEN

Resistin, among its several actions, has been reported to exert central anorexigenic effects in rodents. Some adipokines which centrally modulate food intake have also been reported to affect the activity of gastric smooth muscle, whose motor responses represent a source of peripheral signals implicated in the control of the hunger-satiety cycle through the gut-brain axis. On this basis, in the present experiments, we investigated whether resistin too could affect the mechanical responses in the mouse longitudinal gastric fundal strips. Electrical field stimulation (EFS) elicited tetrodotoxin- and atropine-sensitive contractile responses. Resistin reduced the amplitude of the EFS-induced contractile responses. This effect was no longer detected in the presence of L-NNA, a nitric oxide (NO) synthesis inhibitor. Resistin did not influence the direct muscular response to methacholine. In the presence of carbachol and guanethidine, EFS elicited inhibitory responses whose amplitude was increased by resistin. L-NNA abolished the inhibitory responses evoked by EFS, indicating their nitrergic nature. In the presence of L-NNA, resistin did not have any effect on the EFS-evoked inhibitory responses. Western blot and immunofluorescence analysis revealed a significant increase in neuronal nitric oxide synthase (nNOS) expression in neurons of the myenteric plexus following resistin exposure. In conclusion, the present results offer the first evidence that resistin acts on the gastric fundus, likely through a modulatory action on the nitrergic neurotransmission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA