RESUMEN
This study investigated in-situ the seasonal and diurnal variation of emissions of greenhouse gases (GHGs) from both indigenous and exotic plant species and different environments in the Kaomei Estuary Wetland in central Taiwan with a self-designed non-dispersive infrared monitoring system. This study computed CO2 equivalent (CO2-e) emissions to identify their contribution to global warming. The net primary production and carbon sequestration were then estimated to determine the carbon budget of the coastal estuarine wetland. It concluded that the Kaomei Estuary Wetland functioned as a GHG source and a carbon sink. A significant diurnal variation of GHG emissions was observed, with generally lower daytime CO2 emissions than those at nighttime, while an opposite trend was observed for CH4 and N2O emissions. High solar radiation in the daytime enhanced the CO2 uptake by plant species via photosynthesis, and also accelerated the microbial activities in waters and soil/mud, both resulting in the decrease in atmospheric CO2 concentration. The highest GHG emissions were observed in summer, followed by fall, spring, and winter. Although the concentrations of GHG emissions from the coastal estuarine wetland were in the order as CO2>CH4>N2O, N2O has the highest impact on global warming. Biomass debris played an important role in carbon sequestration, which is stored in soils and muds and stimulated methanogenic bacteria to emit CH4. Tidal fluctuation and sewage discharge brought nitrogen-containing organics to the coastal estuarine wetland, resulting in high emission of N2O from nitrification and denitrification processes. Two vascular plants, Spartina alterniflora, and Phragmites australis emitted more GHGs than the other two plant species. However, the highest GHG emissions from the Kaomei Estuary Wetland was attributed to Bolboschoenus planiculmis due to its largest coverage area. The annual net primary production (NPP) varied mainly with vegetation coverage and season. The exotic Spartina alterniflora had the highest annual NPP compared to the indigenous plant species because of its high nutrient uptake from the soil/mud by its thriving roots.
Asunto(s)
Gases de Efecto Invernadero , Dióxido de Carbono/análisis , Monitoreo del Ambiente , Gases de Efecto Invernadero/análisis , Metano/análisis , Óxido Nitroso/análisis , Suelo , Taiwán , HumedalesRESUMEN
A number of activated carbons derived from waste tires were further impregnated by gaseous elemental sulfur at temperatures of 400 and 650 degrees C, with a carbon and sulfur mass ratio of 1:3. The capabilities of sulfur diffusing into the micropores of the activated carbons were significantly different between 400 and 650 degrees C, resulting in obvious dissimilarities in the sulfur content of the activated carbons. The sulfur-impregnated activated carbons were examined for the adsorptive capacity of gas-phase mercuric chloride (HgC1) by thermogravimetric analysis (TGA). The analytical precision of TGA was up to 10(-6) g at the inlet HgCl2 concentrations of 100, 300, and 500 microg/m3, for an adsorption time of 3 hr and an adsorption temperature of 150 degrees C, simulating the flue gas emitted from municipal solid waste (MSW) incinerators. Experimental results showed that sulfur modification can slightly reduce the specific surface area of activated carbons. High-surface-area activated carbons after sulfur modification had abundant mesopores and micropores, whereas low-surface-area activated carbons had abundant macropores and mesopores. Sulfur molecules were evenly distributed on the surface of the inner pores after sulfur modification, and the sulfur content of the activated carbons increased from 2-2.5% to 5-11%. After sulfur modification, the adsorptive capacity of HgCl2 for high-surface-area sulfurized activated carbons reached 1.557 mg/g (22 times higher than the virgin activated carbons). The injection of activated carbons was followed by fabric filtration, which is commonly used to remove HgCl2 from MSW incinerators. The residence time of activated carbons collected in the fabric filter is commonly about 1 hr, but the time required to achieve equilibrium is less than 10 min. Consequently, it is worthwhile to compare the adsorption rates of HgCl2 in the time intervals of < 10 and 10-60 min.
Asunto(s)
Carbono/química , Cloruro de Mercurio/química , Azufre/química , Adsorción , Automóviles , Residuos Industriales/análisis , Porosidad , Propiedades de Superficie , Termodinámica , TermogravimetríaRESUMEN
In this study, the pollution characteristics, spatiotemporal variation, and potential sources of atmospheric speciated mercury (ASM) in an industrial harbor area were explored. Gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particle-bound mercury (PBM) were sampled by a self-designed manual system at three harbor sites in four seasons. The yearly average concentrations of GEM, GOM, and PBM were 6.7 ± 2.0 ng/m3, 244 ± 70 pg/m3, and 410 ± 105 pg/m3, respectively. The seasonal average ASM concentration was in the order of: winter > fall > spring > summer. In terms of species, GEM dominated ASM, while reactive mercury (RM = GOM + PBM) accounted for 6.0-15.7%of ASM, implying that ASM was governed by anthropogenic sources in the harbor area. The highest ASM concentrations were observed at Site Zhonghe (ZH), which is mainly influenced by both ship exhausts and industrial emissions, and positively correlated with CO, NOx, and SO2. In particular, GOM was positively correlated with O3, and negatively correlated with air temperature and relative humidity, showing high impact from atmospheric photochemical reactions. Air masses transporting westerly in spring were mainly from ship exhausts. In summer, air masses transporting from the south were from utility power plants and machinery exhausts. In fall and winter, air masses were transported mainly from the north, blowing by the long-range transport of polluted air masses originated from the north. Both principal component analysis and positive matrix factorization results indicate that coal burning, industrial emissions, and vehicular exhausts are the main contributors to ASM. Site Zhongdao (ZD) was close to the bulk carrier loading and unloading zones and was highly influenced by mobile sources, while Site ZH was mainly influenced by the neighboring industrial complex.
Asunto(s)
Contaminantes Atmosféricos , Mercurio , Contaminantes Atmosféricos/análisis , Atmósfera , Monitoreo del Ambiente , Asia Oriental , Mercurio/análisis , Estaciones del AñoRESUMEN
This study explored the temporal variation, gas-particle partition, and potential origins of atmospheric speciated mercury at a remote island in the South China Sea. Two-year data of three mercury species was measured at the Taiping Island. Air masses were clustered into five transport routes (A-E) to resolve the potential origins of atmospheric mercury. Field measurement showed that the concentration of gaseous elemental mercury (GEM) (1.33 ± 0.52 ng/m3) was close to the GEM background level of Northern Hemisphere, while those of GOM and PHg were 13.39 ± 3.58 and 94.33 ± 30.25 pg/m3, respectively. Both regular and intensive samplings concluded a consistent trend of higher mercury level in winter and spring than that in summer and fall. GEM dominated atmospheric mercury in all seasons (86.2-98.5%), while the highest partition of particle-bound mercury (PHg) was observed in winter (13.8%). The highest GEM concentrations were observed for Route A originating from central China and western Taiwan Island, and followed by Routes D and E from the Philippines, Malaysia, and Indonesia, while the lowest concentrations of GEM were observed for Routes B and C originating from North China, Korea, and Japan. Most importantly, high correlation of GEM versus levoglucosan and K+ in PM2.5 (r = 0.764 and 0.758, p < 0.01) confirmed that GEM was mainly emitted from biomass burning sources at the surrounding countries.
RESUMEN
This study aims to investigate the photothermal oxidation removal of Hg0 in simulated flue gases using photothermal catalysts at relatively low temperatures of 120-160 °C in two phases: the first phase applied the sol-gel method to prepare TiO2 and CeO2/TiO2 photothermal catalysts and characterized surface properties by specific surface area analysis, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and photoluminescence spectroscopy. The second phase investigated the effects of operating parameters on Hg0 oxidation efficiency at lower temperatures of 100-160 °C. The operating parameters included reaction temperatures and modified concentrations of CeO2. Experimental results indicated that TiO2 prepared by the sol-gel method was mainly in the anatase phase. XPS analysis showed that Ce mostly existed in the form of Ce4+. The content of surface-chemisorbed oxygen increased with the modification amount of CeO2. Photothermal catalytic oxidation results indicated that CeO2/TiO2 had a much higher oxidation efficiency of Hg0 at 120-160 °C than neat TiO2, which increased from 30-60 to >90%. 7%CeO2/TiO2 not only had the best photothermal performance but also maintained high efficiency at a relatively higher reaction temperature of 160 °C.
RESUMEN
This study firstly investigated the species, concentration variation, and emission factors of mercury emitted from the burning of incenses and joss papers in an Asian temple. Both indoor and outdoor speciated mercury (GEM, GOM, and PHg) were sampled by manual samplers, while ambient GEM at an indoor site was in-situ monitored by a continuous GEM monitor. Field measurement results showed that the total atmospheric mercury (TAM) concentrations in indoor and outdoor environments were in the range of 8.03-35.72 and 6.03-31.35 ng/m3, respectively. The indoor and outdoor ratios (I/O) of TAM in the daytime and at nighttime were in the range of 0.64-0.90 and 1.50-2.04, respectively. The concentrations of GEM, GOM, and PHg during the holiday periods were approximately 1-4 times higher than those during the non-holiday periods. GEM was the dominant mercury species in the indoor and outdoor environments and accounted for 63-81% of TAM, while the oxidized mercury accounted for 19-37% of TAM. Burning incenses and joss papers in a combustion chamber showed that the concentration of GEM from joss paper burning ranged from 4.07 to 11.62 µg/m3, or about 13.97 times higher than that of incense burning, while the concentration of PHg from incense burning ranged from 95.91 to 135.07 ng/m3, or about 3.29 times higher than that of joss paper burning. The emission factors of incense burning were 10.39 ng/g of GEM and 1.40 ng/g of PHg, while those of joss paper burning were 12.65 ng/g of GEM and 1.27 ng/g of PHg, respectively. This study revealed that speciated mercury emitted from worship activities had significant influence on the indoor and outdoor mercury concentrations in an Asian temple. Higher intensity of worship activities during holidays resulted in a higher concentration of speciated mercury in indoor and outdoor air, which might cause health threats to worshipers, staffs, and surrounding inhabitants through long-term exposure.
Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Mercurio/análisis , Papel , Religión , AsiaRESUMEN
The catalytic removal of Hg(0) was investigated to ascertain whether the catalysts could simultaneously possess both thermo- and photo-catalytic reactivity. The immobilized V2O5/TiO2 and WO3/TiO2 catalysts were synthesized by sol-gel method and then coated on the surface of glass beads for catalytic removal of Hg(0). They were also characterized by SEM, BET, XRD, UV-visible, and XPS analysis, and their catalytic reactivity was tested under 100-160 °C under the near-UV irradiation. The results indicated that V2O5/TiO2 solely possessed the thermo-catalytic reactivity while WO3/TiO2 only had photo-catalytic reactivity. Although the synthesis catalytic reactivity has not been found for these catalysts up to date, but compared with TiO2, the removal efficiencies of Hg(0) at 140 and 160 °C were enhanced; particularly, the efficiency was improved from 20 % at 160 °C by TiO2 to nearly 90 % by WO3/TiO2 under the same operating conditions. The effects of doping amount of V2O5 and WO3 were also investigated, and the results showed that 10 % V2O5 and 5 % WO3/TiO2 were the best immobilized catalysts for thermo- and photo-catalytic reactivity, respectively. The effect of different influent concentrations of Hg(0) was demonstrated that the highest concentration of Hg(0) led to the best removal efficiencies for V2O5/TiO2 and WO3/TiO2 at 140 and 160 °C, because high Hg(0) concentration increased the mass transfer rate of Hg(0) toward the surface of catalysts and drove the reaction to proceed. At last, the effect of single gas component on the removal of Hg(0) was also investigated.
Asunto(s)
Contaminantes Ambientales/química , Mercurio/química , Óxidos/química , Titanio/química , Tungsteno/química , Compuestos de Vanadio/química , Catálisis , Restauración y Remediación Ambiental/métodos , Rayos UltravioletaRESUMEN
The photo-oxidation of Hg(0) in a lab-scale reactor by titanium dioxide (TiO2) coated on the surface of glass beads was investigated at high temperatures. TiO2 was calcinated at four different temperatures of 300 °C, 400 °C, 500 °C and 600 °C (noted as Ti300, Ti400, Ti500 and Ti600) and characterized for its physicochemical properties. The calcinated TiO2 coating on the glass beads was then tested to compare the photo-oxidation efficiencies of Hg(0) with an incident light of 365 nm. The results showed that the oxidation efficiencies of Hg(0) for Ti400 and Ti500 were higher than those of Ti300 and Ti600. To enhance the photo-oxidation efficiency of Hg(0), Ti400 was selected to examine the wave lengths (λ) of 254 nm, 365 nm and visible light with various influent Hg(0) concentrations. The effects of irradiation strength and the presence of oxygen on the photo-oxidation efficiency of Hg(0) were further investigated, respectively. This study revealed that the wave length (λ) of 254 nm could promote the photo-oxidation efficiency of Hg(0) at 140 and 160 °C, while increasing the influent Hg(0) concentration and could enhance the photo-oxidation rate of Hg(0). However, the influence of 5% O2 present in the flue gas for the enhancement of Hg(0) oxidation was limited. Moreover, the intensity of the incident wave length of 365 nm and visible light were demonstrated to boost the photo-oxidation efficiency of Hg(0) effectively.
Asunto(s)
Mercurio/química , Titanio/química , Catálisis , Ambiente , Gases/química , Calor , Oxidación-Reducción , Fotoquímica , Centrales Eléctricas , Propiedades de Superficie , Rayos Ultravioleta , Difracción de Rayos XRESUMEN
This study investigated the tempospatial variation of atmospheric mercury and its gas-particulate partition in the vicinity of a semiconductor manufacturing complex, where a plenty of flat-monitor manufacturing plants using elemental mercury as a light-initiating medium to produce backlight fluorescence tubes and may fugitively emit mercury-containing air pollutants to the atmosphere. Atmospheric mercury speciation, concentration, and the partition of total gaseous mercury (TGM) and particulate mercury (Hgp) were measured at four sites surrounding the semiconductor manufacturing intensive district/complex. One-year field measurement showed that the seasonal averaged concentrations of TGM and Hgp were in the range of 3.30-6.89 and 0.06-0.14 ng/m(3), respectively, whereas the highest 24-h TGM and Hgp concentrations were 10.33 and 0.26 ng/m(3), respectively. Atmospheric mercury apportioned as 92.59-99.01 % TGM and 0.99-7.41 % Hgp. As a whole, the highest and lowest concentrations of TGM were observed in the winter and summer sampling periods, respectively, whereas the concentration of Hgp did not vary much seasonally. The highest TGM concentrations were always observed at the downwind sites, indicating that the semiconductor manufacturing complex was a hot spot of mercury emission source, which caused severe atmospheric mercury contamination over the investigation region.
Asunto(s)
Contaminantes Atmosféricos/análisis , Atmósfera/química , Monitoreo del Ambiente , Mercurio/análisis , Semiconductores , Material Particulado/análisis , Estaciones del AñoRESUMEN
Mercury chloride (HgCl(2)) is the major mercury derivate emitted from municipal solid waste incinerators, which has high risk to the environment and human health. This study investigated the adsorption of vapor-phase HgCl(2) with an innovative composite sulfurized activated carbon (AC), which was derived from the pyrolysis, activation, and sulfurization of waste tires. The composite sulfur-impregnation process impregnated activated carbon with aqueous-phase sodium sulfide (Na(2)S) and followed with vapor-phase elemental sulfur (S(0)). Thermogravimetric analysis (TGA) was applied to investigate the adsorptive capacity of vapor-phase HgCl(2) using the composite sulfurized AC. The operating parameters included the types of composite sulfurized AC, the adsorption temperature, and the influent HgCl(2) concentration. Experimental results indicated that the sulfur-impregnation process could increase the sulfur content of the sulfurized AC, but decreased its specific surface area. This study further revealed that the composite sulfurized AC impregnated with aqueous-phase Na(2)S and followed with vapor-phase S(0) (Na(2)S+S(0) AC) had much higher saturated adsorptive capacity of HgCl(2) than AC impregnated in the reverse sequence (S(0)+Na(2)S AC). A maximum saturated adsorptive capacity of HgCl(2) up to 5236 µg-HgCl(2)/g-C was observed for the composite Na(2)S+S(0) AC, which was approximately 2.00 and 3.17 times higher than those for the single Na(2)S and S(0) ACs, respectively.