Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 98(7): e0071424, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38809021

RESUMEN

Lassa virus (LASV) is the causative agent of human Lassa fever which in severe cases manifests as hemorrhagic fever leading to thousands of deaths annually. However, no approved vaccines or antiviral drugs are currently available. Recently, we screened approximately 2,500 compounds using a recombinant vesicular stomatitis virus (VSV) expressing LASV glycoprotein GP (VSV-LASVGP) and identified a P-glycoprotein inhibitor as a potential LASV entry inhibitor. Here, we show that another identified candidate, hexestrol (HES), an estrogen receptor agonist, is also a LASV entry inhibitor. HES inhibited VSV-LASVGP replication with a 50% inhibitory concentration (IC50) of 0.63 µM. Importantly, HES also inhibited authentic LASV replication with IC50 values of 0.31 µM-0.61 µM. Time-of-addition and cell-based membrane fusion assays suggested that HES inhibits the membrane fusion step during virus entry. Alternative estrogen receptor agonists did not inhibit VSV-LASVGP replication, suggesting that the estrogen receptor itself is unlikely to be involved in the antiviral activity of HES. Generation of a HES-resistant mutant revealed that the phenylalanine at amino acid position 446 (F446) of LASVGP, which is located in the transmembrane region, conferred resistance to HES. Although mutation of F446 enhanced the membrane fusion activity of LASVGP, it exhibited reduced VSV-LASVGP replication, most likely due to the instability of the pre-fusion state of LASVGP. Collectively, our results demonstrated that HES is a promising anti-LASV drug that acts by inhibiting the membrane fusion step of LASV entry. This study also highlights the importance of the LASVGP transmembrane region as a target for anti-LASV drugs.IMPORTANCELassa virus (LASV), the causative agent of Lassa fever, is the most devastating mammarenavirus with respect to its impact on public health in West Africa. However, no approved antiviral drugs or vaccines are currently available. Here, we identified hexestrol (HES), an estrogen receptor agonist, as the potential antiviral candidate drug. We showed that the estrogen receptor itself is not involved in the antiviral activity. HES directly bound to LASVGP and blocked membrane fusion, thereby inhibiting LASV infection. Through the generation of a HES-resistant virus, we found that phenylalanine at position 446 (F446) within the LASVGP transmembrane region plays a crucial role in the antiviral activity of HES. The mutation at F446 caused reduced virus replication, likely due to the instability of the pre-fusion state of LASVGP. These findings highlight the potential of HES as a promising candidate for the development of antiviral compounds targeting LASV.


Asunto(s)
Antivirales , Fiebre de Lassa , Virus Lassa , Internalización del Virus , Replicación Viral , Virus Lassa/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Humanos , Antivirales/farmacología , Replicación Viral/efectos de los fármacos , Animales , Chlorocebus aethiops , Fiebre de Lassa/virología , Fiebre de Lassa/tratamiento farmacológico , Células Vero , Receptores de Estrógenos/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Línea Celular , Fenilalanina/farmacología , Fenilalanina/análogos & derivados
2.
J Virol ; 98(7): e0049924, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38953631

RESUMEN

Tibroviruses are novel rhabdoviruses detected in humans, cattle, and arthropods. Four tibroviruses are known to infect humans: Bas-Congo virus (BASV), Ekpoma virus 1 (EKV-1), Ekpoma virus 2, and Mundri virus. However, since none of them has been isolated, their biological properties are largely unknown. We aimed to characterize the human tibrovirus glycoprotein (G), which likely plays a pivotal role in viral tropism and pathogenicity. Human tibrovirus Gs were found to share some primary structures and display 14 conserved cysteine residues, although their overall amino acid homology was low (29%-48%). Multiple potential glycosylation sites were found on the G molecules, and endoglycosidase H- and peptide-N-glycosidase F-sensitive glycosylation was confirmed. AlphaFold-predicted three-dimensional (3D) structures of human tibrovirus Gs were overall similar. Membrane fusion mediated by these tibrovirus Gs was induced by acidic pH. The low pH-induced conformational change that triggers fusion was reversible. Virus-like particles (VLPs) were produced by transient expression of Gs in cultured cells and used to produce mouse antisera. Using vesicular stomatitis Indiana virus pseudotyped with Gs, we found that the antisera to the respective tibrovirus VLPs showed limited cross-neutralizing activity. It was also found that human C-type lectins and T-cell immunoglobulin mucin 1 acted as attachment factors for G-mediated entry into cells. Interestingly, BASV-G showed the highest ability to utilize these molecules. The viruses infected a wide range of cell lines with preferential tropism for human-derived cells whereas the preference of EKV-1 was unique compared with the other human tibroviruses. These findings provide fundamental information to understand the biological properties of the human tibroviruses. IMPORTANCE: Human tibroviruses are poorly characterized emerging rhabdoviruses associated with either asymptomatic infection or severe disease with a case fatality rate as high as 60% in humans. However, the extent and burden of human infection as well as factors behind differences in infection outcomes are largely unknown. In this study, we characterized human tibrovirus glycoproteins, which play a key role in virus-host interactions, mainly focusing on their structural and antigenic differences and cellular tropism. Our results provide critical information for understanding the biological properties of these novel viruses and for developing appropriate preparedness interventions such as diagnostic tools, vaccines, and effective therapies.


Asunto(s)
Proteínas del Envoltorio Viral , Humanos , Animales , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Ratones , Glicosilación , Internalización del Virus , Tropismo Viral , Línea Celular , Mucina-1/metabolismo , Células HEK293 , Anticuerpos Antivirales/inmunología , Secuencia de Aminoácidos
3.
Lancet Microbe ; 5(6): e529-e537, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555924

RESUMEN

BACKGROUND: Bas-Congo virus (BASV), an emerging tibrovirus, was associated with an outbreak of acute haemorrhagic fever in Mangala, Democratic Republic of the Congo, in 2009. In 2012, neutralising antibodies to BASV were detected in the lone survivor and one of his close contacts. However, subsequent serological and molecular surveys were unsuccessful as neither BASV antibodies nor its RNA were detected. In this study, we determined the seroprevalence of BASV infection in Mangala 13 years after the initial outbreak. METHODS: We conducted a population-based serological survey from Jan 17 to Jan 23, 2022. Consenting individuals at least 5 years of age, living in Mangala for at least 4 weeks, and who had no contraindication to venepuncture were enrolled. Participants were interviewed using a pre-tested questionnaire for sociodemographic and clinical characteristics. We supplemented the collected serum samples with 284 archived samples from Matadi and Kinshasa. All samples were tested for antibodies to BASV and other tibroviruses using a pseudovirus-based neutralisation test. FINDINGS: Among the 267 individuals from Mangala, the prevalence of BASV antibodies was 55% (95% CI 49-61; n=147). BASV seropositivity odds significantly increased with age (5·2 [95% CI 2·1-12·9] to 83·9 [20·8-337·7] times higher in participants aged 20 years or older than participants aged 5-19 years). Some occupational categories (eg, farmer or public servant) were associated with seropositivity. Only nine (6%) of 160 samples from Matadi and one (<1%) of 124 samples from Kinshasa had neutralising antibodies to BASV. Moreover, we also detected neutralising antibodies to other tibroviruses-Ekpoma virus 1, Ekpoma virus 2, and Mundri virus-in 84 (31%), 251 (94%), and 219 (82%) of 267 Mangala samples; 14 (9%), 62 (39%), and 120 (75%) of 160 Matadi samples; and six (5%), five (4%), and 33 (27%) of 124 Kinshasa samples, respectively. INTERPRETATION: Human infection with BASV and other tibroviruses seems common in Mangala, although no deadly outbreak has been reported since 2009. Exposure to BASV might be highly restricted to Mangala and the increasing prevalence of neutralising antibodies with age suggests regular contact with the virus in this city. Altogether, our findings suggest that human infection with tibroviruses could be common in the study areas and not associated with deadly haemorrhagic or debilitating syndromes. FUNDING: Japan Agency for Medical Research and Development (AMED) and Japan International Cooperation Agency (JICA) under the Science and Technology Research Partnership for Sustainable Development (SATREPS) and Japan Program for Infectious Diseases Research and Infrastructure from AMED.


Asunto(s)
Anticuerpos Antivirales , Humanos , República Democrática del Congo/epidemiología , Masculino , Estudios Seroepidemiológicos , Adulto , Estudios Transversales , Adolescente , Femenino , Persona de Mediana Edad , Niño , Adulto Joven , Anticuerpos Antivirales/sangre , Preescolar , Anticuerpos Neutralizantes/sangre , Anciano , Brotes de Enfermedades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA