Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000261

RESUMEN

Diffuse Large B-cell Lymphoma (DLBCL), with its intrinsic genetic and epigenetic heterogeneity, exhibits significantly variable clinical outcomes among patients treated with the current standard regimen. Disulfidptosis, a novel form of regulatory cell death triggered by disulfide stress, is characterized by the collapse of cytoskeleton proteins and F-actin due to intracellular accumulation of disulfides. We investigated the expression variations of disulfidptosis-related genes (DRGs) in DLBCL using two publicly available gene expression datasets. The initial analysis of DRGs in DLBCL (GSE12453) revealed differences in gene expression patterns between various normal B cells and DLBCL. Subsequent analysis (GSE31312) identified DRGs strongly associated with prognostic outcomes, revealing eight characteristic DRGs (CAPZB, DSTN, GYS1, IQGAP1, MYH9, NDUFA11, NDUFS1, OXSM). Based on these DRGs, DLBCL patients were stratified into three groups, indicating that (1) DRGs can predict prognosis, and (2) DRGs can help identify novel therapeutic candidates. This study underscores the significant role of DRGs in various biological processes within DLBCL. Assessing the risk scores of individual DRGs allows for more precise stratification of prognosis and treatment strategies for DLBCL patients, thereby enhancing the effectiveness of clinical practice.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Linfoma de Células B Grandes Difuso , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Humanos , Pronóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Perfilación de la Expresión Génica
2.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000453

RESUMEN

Regulatory T cells (Tregs) possess unique immunosuppressive activity among CD4-positive T cells. Tregs are ubiquitously present in mammals and function to calm excessive immune responses, thereby suppressing allergies or autoimmune diseases. On the other hand, due to their immunosuppressive function, Tregs are thought to promote cancer progression. The tumor microenvironment (TME) is a multicellular system composed of many cell types, including tumor cells, infiltrating immune cells, and cancer-associated fibroblasts (CAFs). Within this environment, Tregs are recruited by chemokines and metabolic factors and impede effective anti-tumor responses. However, in some cases, their presence can also improve patient's survival rates. Their functional consequences may vary across tumor types, locations, and stages. An in-depth understanding of the precise roles and mechanisms of actions of Treg is crucial for developing effective treatments, emphasizing the need for further investigation and validation. This review aims to provide a comprehensive overview of the complex and multifaceted roles of Tregs within the TME, elucidating cellular communications, signaling pathways, and their impacts on tumor progression and highlighting their potential anti-tumor mechanisms through interactions with functional molecules.


Asunto(s)
Progresión de la Enfermedad , Neoplasias , Linfocitos T Reguladores , Microambiente Tumoral , Humanos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Microambiente Tumoral/inmunología , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/metabolismo , Animales , Transducción de Señal , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/inmunología , Fibroblastos Asociados al Cáncer/patología
3.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474089

RESUMEN

N-myc downstream-regulated gene 2 (NDRG2), which is a tumour suppressor, is frequently lost in many types of tumours, including adult T-cell leukaemia/lymphoma (ATL). The downregulation of NDRG2 expression is involved in tumour progression through the aberrant phosphorylation of several important signalling molecules. We observed that the downregulation of NDRG2 induced the translocation of protein arginine methyltransferase 5 (PRMT5) from the nucleus to the cytoplasm via the increased phosphorylation of PRMT5 at Serine 335. In NDRG2low ATL, cytoplasmic PRMT5 enhanced HSP90A chaperone activity via arginine methylation, leading to tumour progression and the maintenance of oncogenic client proteins. Therefore, we examined whether the inhibition of PRMT5 activity is a drug target in NDRG2low tumours. The knockdown of PRMT5 and binding partner methylsome protein 50 (MEP50) expression significantly demonstrated the suppression of cell proliferation via the degradation of AKT and NEMO in NDRG2low ATL cells, whereas NDRG2-expressing cells did not impair the stability of client proteins. We suggest that the relationship between PRMT5/MEP50 and the downregulation of NDRG2 may exhibit a novel vulnerability and a therapeutic target. Treatment with the PRMT5-specific inhibitors CMP5 and HLCL61 was more sensitive in NDRG2low cancer cells than in NDRG2-expressing cells via the inhibition of HSP90 arginine methylation, along with the degradation of client proteins. Thus, interference with PRMT5 activity has become a feasible and effective strategy for promoting cancer vulnerability in NDRG2low ATL.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Leucemia-Linfoma de Células T del Adulto , Linfoma , Neoplasias , Adulto , Humanos , Proteína-Arginina N-Metiltransferasas/metabolismo , Leucemia-Linfoma de Células T del Adulto/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Arginina/metabolismo , Metilación , Proteínas Supresoras de Tumor/metabolismo
4.
Cancer Sci ; 113(2): 684-696, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34794206

RESUMEN

Adult T-cell leukemia/lymphoma (ATL) is a highly chemoresistant malignancy of peripheral T lymphocytes caused by human T-cell leukemia virus type 1 infection, for which there is an urgent need for more effective therapeutic options. The molecular chaperone heat shock protein 90 (HSP90) plays a crucial role in nuclear factor-κB (NF-κB)-mediated antiapoptosis in ATL cells, and HSP90 inhibitors are new candidate therapeutics for ATL. Accordingly, we investigated the anti-ATL effects of a novel oral HSP90 inhibitor, TAS-116 (pimitespib), and the mechanisms involved in ex vivo and in vivo preclinical models. TAS-116 achieved IC50 values of less than 0.5 µmol/L in 10 ATL-related cell lines and less than 1 µmol/L in primary peripheral blood cells of nine ATL patients; no toxicity was observed toward CD4+ lymphocytes from healthy donors, indicating the safety of this agent. Given orally, TAS-116 also showed significant inhibitory effects against tumor cell growth in ATL cell-xenografted mice. Furthermore, gene expression profiling of TAS-116-treated Tax-positive or -negative cell lines and primary ATL cells using DNA microarray and multiple pathway analysis revealed the significant downregulation of the NF-κB pathway in Tax-positive cells and cell-cycle arrest in Tax-negative cells and primary ATL cells. TAS-116 suppressed the activator protein-1 and tumor necrosis factor pathways in all examined cells. These findings strongly indicate the efficacy of TAS-116, regardless of the stage of ATL progression, and its potential application as a novel clinical anti-ATL therapeutic agent.


Asunto(s)
Antineoplásicos/uso terapéutico , Benzamidas/uso terapéutico , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Pirazoles/uso terapéutico , Animales , Antineoplásicos/farmacología , Benzamidas/farmacología , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Ratones , FN-kappa B/metabolismo , Pirazoles/farmacología , Transducción de Señal/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Virol ; 95(22): e0091221, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34431698

RESUMEN

Respiratory syncytial virus (RSV) is the main cause of acute respiratory infections in young children and also has a major impact on the elderly and immunocompromised people. In the absence of a vaccine or efficient treatment, a better understanding of RSV interactions with the host antiviral response during infection is needed. Previous studies revealed that cytoplasmic inclusion bodies (IBs), where viral replication and transcription occur, could play a major role in the control of innate immunity during infection by recruiting cellular proteins involved in the host antiviral response. We recently showed that the morphogenesis of IBs relies on a liquid-liquid-phase separation mechanism depending on the interaction between viral nucleoprotein (N) and phosphoprotein (P). These scaffold proteins are expected to play a central role in the recruitment of cellular proteins to IBs. Here, we performed a yeast two-hybrid screen using RSV N protein as bait and identified the cellular protein TAX1BP1 as a potential partner of this viral protein. This interaction was validated by pulldown and immunoprecipitation assays. We showed that TAX1BP1 suppression has only a limited impact on RSV infection in cell cultures. However, RSV replication is decreased in TAX1BP1-deficient (TAX1BP1 knockout [TAX1BP1KO]) mice, whereas the production of inflammatory and antiviral cytokines is enhanced. In vitro infection of wild-type or TAX1BP1KO alveolar macrophages confirmed that the innate immune response to RSV infection is enhanced in the absence of TAX1BP1. Altogether, our results suggest that RSV could hijack TAX1BP1 to restrain the host immune response during infection. IMPORTANCE Respiratory syncytial virus (RSV), which is the leading cause of lower respiratory tract illness in infants, remains a medical problem in the absence of a vaccine or efficient treatment. This virus is also recognized as a main pathogen in the elderly and immunocompromised people, and the occurrence of coinfections (with other respiratory viruses and bacteria) amplifies the risks of developing respiratory distress. In this context, a better understanding of the pathogenesis associated with viral respiratory infections, which depends on both viral replication and the host immune response, is needed. The present study reveals that the cellular protein TAX1BP1, which interacts with the RSV nucleoprotein N, participates in the control of the innate immune response during RSV infection, suggesting that the N-TAX1BP1 interaction represents a new target for the development of antivirals.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/inmunología , Proteínas de Neoplasias/inmunología , Proteínas de la Nucleocápside/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Animales , Línea Celular , Cricetinae , Humanos , Inmunidad Innata , Ratones , Ratones Noqueados , Replicación Viral
6.
Yeast ; 37(3): 261-268, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31899805

RESUMEN

Energy-metabolism oscillations (EMO) are ultradian biological rhythms observed in in aerobic chemostat cultures of Saccharomyces cerevisiae. EMO regulates energy metabolism such as glucose, carbohydrate storage, O2 uptake, and CO2 production. PSK1 is a nutrient responsive protein kinase involved in regulation of glucose metabolism, sensory response to light, oxygen, and redox state. The aim of this investigation was to assess the function of PSK1 in regulation of EMO. The mRNA levels of PSK1 fluctuated in concert with EMO, and deletion of PSK1 resulted in unstable EMO with disappearance of the fluctuations and reduced amplitude, compared with the wild type. Furthermore, the mutant PSK1Δ showed downregulation of the synthesis and breakdown of glycogen with resultant decrease in glucose concentrations. The redox state represented by NADH also decreased in PSK1Δ compared with the wild type. These data suggest that PSK1 plays an important role in the regulation of energy metabolism and stabilizes ultradian biological rhythms. These results enhance our understanding of the mechanisms of biorhythms in the budding yeast.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Metabolismo Energético/fisiología , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Metabolismo Energético/genética , Regulación Fúngica de la Expresión Génica , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Oxígeno/metabolismo , Proteínas Quinasas/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcriptoma , Ritmo Ultradiano/fisiología
7.
Cancer Sci ; 109(1): 250-258, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29150975

RESUMEN

It is widely accepted that aberrant activation of the Wnt signaling pathway is responsible for the development of precursor lesions of colorectal cancer (CRC). However, the molecular mechanisms involved in the process of progression from these precursor lesions to invasive lesions of CRC are not fully understood. Recently, we reported that constitutive activation of MAPK accompanied by downregulation of dual-specificity phosphatase 4 (DUSP4), a MAPK phosphatase, contributes to the progression of precursor lesions in the pancreas. In this study, we found that downregulation of DUSP4 was related to constitutive activation of ERKs in CRC cells. Restoration of DUSP4 resulted in inactivation of ERKs, leading to suppression of both proliferation and invasiveness, as shown by treatment with an MEK inhibitor. Furthermore, immunohistochemistry revealed that DUSP4 expression was upregulated in the superficial region of CRC tissue, whereas it was significantly downregulated in the deep region. In contrast, ERKs in the deep region were markedly hyperactivated compared to those in the superficial region. These results suggest that activation of the MAPK signaling pathway caused by downregulation of DUSP4 is responsible for progression of CRCs and would be a promising therapeutic target.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Regulación hacia Abajo , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Anciano , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Fosforilación
8.
J Pathol ; 239(1): 97-108, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26913567

RESUMEN

We have previously reported that Salvador homologue 1 (SAV1), a component of the Hippo pathway, is significantly down-regulated in high-grade clear cell renal cell carcinoma (ccRCC) due to 14q copy number loss, and that this down-regulation contributes to the proliferation and survival of renal tubular epithelial cells through activation of Yes-associated protein 1 (YAP1), a downstream target of the Hippo pathway. However, the impact of SAV1 loss on the proliferation and survival of kidney cells in vivo remained to be determined. To address this issue, we generated kidney-specific Sav1-knockout (Cdh16-Cre;Sav1(fl/fl) ) mice. Sav1 deficiency enhanced the proliferation of renal tubular epithelial cells in Cdh16-Cre;Sav1(fl/fl) mice, accompanied by nuclear localization of Yap1, suggesting suppression of the Hippo pathway. Sav1 deficiency in renal tubules also caused structural and cellular abnormalities of the epithelial cells, including significant enlargement of their nuclei. Furthermore, Cdh16-Cre;Sav1(fl/fl) mice developed both glomerular and tubular cysts. Although lining cells of the glomerular cysts showed no atypia, those of the tubular cysts showed variations in cell size and nuclear shape, which became more severe as the mice aged. In aged Cdh16-Cre;Sav1(fl/fl) mice, we observed focal disruption of proximal tubules and perivascular lymphocytic infiltration. In conclusion, Sav1 is required for the maintenance of growth, nuclear size and structure of renal tubules under physiological conditions, and its deficiency leads to the acquisition of enhanced proliferation of renal epithelial cells through suppression of Hippo signalling.


Asunto(s)
Proteínas de Ciclo Celular/deficiencia , Proliferación Celular/fisiología , Túbulos Renales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenocarcinoma de Células Claras/etiología , Animales , Cadherinas/metabolismo , Células Madre Embrionarias/metabolismo , Células Epiteliales/metabolismo , Vía de Señalización Hippo , Neoplasias Renales/etiología , Ratones Transgénicos , Nefritis/etiología , Fosfoproteínas/metabolismo , Transducción de Señal/fisiología , Proteínas Señalizadoras YAP
9.
Pathol Int ; 67(2): 83-90, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27976824

RESUMEN

In patients with esophageal squamous cell carcinoma (ESCC), the status of metastasis to lymph nodes is strongly associated with prognosis. Consequently, development of a biomarker to detect the presence of metastasis would be clinically valuable. In this study, we found that overexpression of cannabinoid receptor 1 (CB1R) was applicable as a marker for prediction of metastasis in ESCC. CB1R overexpression was detected immunohistochemically in 54 of 88 cases (61.4%). The intensity of CB1R expression was uniform in both intraepithelial and invasive regions in each case, and was significantly correlated with the status of metastasis to lymph nodes (P = 0.046) and distant organs (P = 0.047). Furthermore, multivariate analysis revealed that CB1R overexpression was independently associated with poor prognosis (P = 0.019). Biological analysis of CB1R overexpression using ESCC cell lines revealed that CB1R activation appeared to promote cell proliferation and invasion. On the basis of these findings, we propose that evaluation of CB1R expression status in biopsy specimens of ESCC using immunohistochemistry might be clinically useful for prediction of metastasis to lymph nodes and distant organs.


Asunto(s)
Biomarcadores de Tumor/análisis , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/patología , Metástasis de la Neoplasia/patología , Receptor Cannabinoide CB1/biosíntesis , Anciano , Área Bajo la Curva , Western Blotting , Carcinoma de Células Escamosas de Esófago , Femenino , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Metástasis Linfática/patología , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/patología , Pronóstico , Modelos de Riesgos Proporcionales , Curva ROC , Regulación hacia Arriba
10.
Cancer Sci ; 107(12): 1919-1928, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27699948

RESUMEN

Gastric cancer (GC) is characterized by amplifications of receptor tyrosine kinases (RTK) and KRAS, therefore, targeting of the RTK/KRAS downstream pathways could help to broaden the applicability of molecular targeted therapy for GC. We assembled a panel of 48 GC cell lines and screened predictors of responsiveness to inhibition of the RAF/MEK/ERK pathway, one of the RTK/KRAS downstream pathways. We found that GC cells with MET amplification or KRAS mutation, but not amplification, tended to be sensitive to MEK inhibition. However, several cell lines without RTK/KRAS alterations also showed high sensitivity to MEK inhibition. We then focused on the phosphorylation of RTK/KRAS downstream molecules to screen for predictors' sensitivity to MEK inhibition. We found that the phosphorylation level of mammalian target of rapamycin complex 1 (mTORC1) downstream molecules, including p70S6K, 4EBP1, and S6, was significantly associated with sensitivity to MEK inhibition in GC cells (P < 0.05), suggesting that mTORC1 activity is related to the sensitivity to MEK inhibition. Furthermore, the change in mTORC1 activity after MEK inhibition was also significantly associated with this sensitivity (P < 0.001). Among the mTORC1 downstream molecules, the change in S6 phosphorylation (pS6) showed the most significant correlation with sensitivity. Using xenograft models derived from highly sensitive and resistant cell lines, we found specific reduction of pS6 in xenografts from highly sensitive cell lines after 6 h of treatment with an MEK inhibitor. Thus, our data suggest the potential clinical applicability of an MEK inhibitor for a proportion of GC patients who could be selected on the basis of pS6 change after MEK inhibition.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteína S6 Ribosómica/metabolismo , Neoplasias Gástricas/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Expresión Génica , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/metabolismo , Fosforilación , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Virol ; 89(16): 8623-31, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26063426

RESUMEN

UNLABELLED: Human T-cell leukemia virus type 1 (HTLV-1)-associated diseases are poorly treatable, and HTLV-1 vaccines are not available. High proviral load is one major risk factor for disease development. HTLV-1 encodes Tax oncoprotein, which activates transcription from viral long terminal repeats (LTR) and various types of cellular promoters. Counteracting Tax function might have prophylactic and therapeutic benefits. In this work, we report on the suppression of Tax activation of HTLV-1 LTR by SIRT1 deacetylase. The transcriptional activity of Tax on the LTR was largely ablated when SIRT1 was overexpressed, but Tax activation of NF-κB was unaffected. On the contrary, the activation of the LTR by Tax was boosted when SIRT1 was depleted. Treatment of cells with resveratrol shunted Tax activity in a SIRT1-dependent manner. The activation of SIRT1 in HTLV-1-transformed T cells by resveratrol potently inhibited HTLV-1 proviral transcription and Tax expression, whereas compromising SIRT1 by specific inhibitors augmented HTLV-1 mRNA expression. The administration of resveratrol also decreased the production of cell-free HTLV-1 virions from MT2 cells and the transmission of HTLV-1 from MT2 cells to uninfected Jurkat cells in coculture. SIRT1 associated with Tax in HTLV-1-transformed T cells. Treatment with resveratrol prevented the interaction of Tax with CREB and the recruitment of CREB, CRTC1, and p300 to Tax-responsive elements in the LTR. Our work demonstrates the negative regulatory function of SIRT1 in Tax activation of HTLV-1 transcription. Small-molecule activators of SIRT1 such as resveratrol might be considered new prophylactic and therapeutic agents in HTLV-1-associated diseases. IMPORTANCE: Human T-cell leukemia virus type 1 (HTLV-1) causes a highly lethal blood cancer or a chronic debilitating disease of the spinal cord. Treatments are unsatisfactory, and vaccines are not available. Disease progression is associated with robust expression of HTLV-1 genes. Suppressing HTLV-1 gene expression might have preventive and therapeutic benefits. It is therefore critical that host factors controlling HTLV-1 gene expression be identified and characterized. This work reveals a new host factor that suppresses HTLV-1 gene expression and a natural compound that activates this suppression. Our findings not only provide new knowledge of the host control of HTLV-1 gene expression but also suggest a new strategy of using natural compounds for prevention and treatment of HTLV-1-associated diseases.


Asunto(s)
Regulación Viral de la Expresión Génica/fisiología , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Sirtuina 1/metabolismo , Inmunoprecipitación de Cromatina , Células HEK293 , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Células Jurkat , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Resveratrol , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sirtuina 1/antagonistas & inhibidores , Estilbenos/farmacología , Secuencias Repetidas Terminales/genética , Virión/efectos de los fármacos
12.
Leuk Res ; 138: 107454, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38452534

RESUMEN

Adult T-cell leukemia/lymphoma (ATL), caused by human T-cell leukemia virus type-1 (HTLV-1) infection, is a malignant hematologic cancer that remains difficult to cure. We herein established a biomarker identification strategy based on the total cell proteomics of cultured ATL cells to search for novel ATL biomarkers. Four protocols with a combination of selected conditions based on lysis buffers and addition agents for total cell proteomics were used for a differential analysis between the ATL cell group (consisting of 11 cell lines), HTLV-1-infected cell group (consisting of 6 cell lines), and HTLV-1-negative cell group (consisting of 6 cell lines). In the analysis, we identified 24 and 27 proteins that were significantly increased (ratio ≥2.0, p < 0.05) and decreased (ratio ≤ 0.5, p < 0.05), respectively, in the ATL group. Previously reported CCL3 and CD30/TNFRSF8 were confirmed to be among significantly increased proteins. Furthermore, correlation analysis between identified proteins and Tax suggested that RASSF2 and GORASP2 were candidates of novel Tax-regulated factors. The biomarker identification strategy established herein is expected to contribute to the identification of biomarkers for ATL and other diseases.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T del Adulto , Linfoma , Adulto , Humanos , Proteómica , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Biomarcadores , Digestión , Productos del Gen tax/metabolismo , Proteínas de la Matriz de Golgi
13.
Genes (Basel) ; 14(11)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-38002949

RESUMEN

Ferroptosis, a regulated cell death dependent on iron, has garnered attention as a potential broad-spectrum anticancer approach in leukemia research. However, there has been limited ferroptosis research on ATL, an aggressive T-cell malignancy caused by HTLV-1 infection. Our study employs bioinformatic analysis, utilizing dataset GSE33615, to identify 46 ferroptosis-related DEGs and 26 autophagy-related DEGs in ATL cells. These DEGs are associated with various cellular responses, chemical stress, and iron-related pathways. Autophagy-related DEGs are linked to autophagy, apoptosis, NOD-like receptor signaling, TNF signaling, and the insulin resistance pathway. PPI network analysis revealed 10 hub genes and related biomolecules. Moreover, we predicted crucial miRNAs, transcription factors, and potential pharmacological compounds. We also screened the top 20 medications based on upregulated DEGs. In summary, our study establishes an innovative link between ATL treatment and ferroptosis, offering promising avenues for novel therapeutic strategies in ATL.


Asunto(s)
Ferroptosis , Leucemia-Linfoma de Células T del Adulto , Linfoma , Adulto , Humanos , Leucemia-Linfoma de Células T del Adulto/genética , Leucemia-Linfoma de Células T del Adulto/patología , Leucemia-Linfoma de Células T del Adulto/terapia , Ferroptosis/genética , Transcriptoma , Linfocitos T , Hierro
14.
Clin Transl Med ; 13(8): e1364, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37581569

RESUMEN

BACKGROUND: The immunomodulatory drug lenalidomide, which is now widely used for the treatment of multiple myeloma (MM), exerts pharmacological action through the ubiquitin-dependent degradation of IKZF1 and subsequent down-regulation of interferon regulatory factor 4 (IRF4), a critical factor for the survival of MM cells. IKZF1 acts principally as a tumour suppressor via transcriptional repression of oncogenes in normal lymphoid lineages. In contrast, IKZF1 activates IRF4 and other oncogenes in MM cells, suggesting the involvement of unknown co-factors in switching the IKZF1 complex from a transcriptional repressor to an activator. The transactivating components of the IKZF1 complex might promote lenalidomide resistance by residing on regulatory regions of the IRF4 gene to maintain its transcription after IKZF1 degradation. METHODS: To identify unknown components of the IKZF1 complex, we analyzed the genome-wide binding of IKZF1 in MM cells using chromatin immunoprecipitation-sequencing (ChIP-seq) and screened for the co-occupancy of IKZF1 with other DNA-binding factors on the myeloma genome using the ChIP-Atlas platform. RESULTS: We found that c-FOS, a member of the activator protein-1 (AP-1) family, is an integral component of the IKZF1 complex and is primarily responsible for the activator function of the complex in MM cells. The genome-wide screening revealed the co-occupancy of c-FOS with IKZF1 on the regulatory regions of IKZF1-target genes, including IRF4 and SLAMF7, in MM cells but not normal bone marrow progenitors, pre-B cells or mature T-lymphocytes. c-FOS and IKZF1 bound to the same consensus sequence as the IKZF1 complex through direct protein-protein interactions. The complex also includes c-JUN and IKZF3 but not IRF4. Treatment of MM cells with short-hairpin RNA against FOS or a selective AP-1 inhibitor significantly enhanced the anti-MM activity of lenalidomide in vitro and in two murine MM models. Furthermore, an AP-1 inhibitor mitigated the lenalidomide resistance of MM cells. CONCLUSIONS: C-FOS determines lenalidomide sensitivity and mediates drug resistance in MM cells as a co-factor of IKZF1 and thus, could be a novel therapeutic target for further improvement of the prognosis of MM patients.


Asunto(s)
Resistencia a Antineoplásicos , Factor de Transcripción Ikaros , Lenalidomida , Mieloma Múltiple , Proteínas Proto-Oncogénicas c-fos , Animales , Humanos , Ratones , Médula Ósea , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Lenalidomida/farmacología , Lenalidomida/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Transactivadores/uso terapéutico , Factor de Transcripción AP-1/uso terapéutico , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo
15.
Front Oncol ; 13: 1272528, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38344143

RESUMEN

Adult T-cell leukemia/lymphoma (ATL) is an aggressive T-cell neoplasia associated with human T-cell leukemia virus type 1 (HTLV-1) infection and has an extremely poor prognosis. Lenalidomide (LEN; a second-generation immunomodulatory drug [IMiD]) has been employed as an additional therapeutic option for ATL since 2017, but its mechanism of action has not been fully proven, and recent studies reported emerging concerns about the development of second primary malignancies in patients treated with long-term IMiD therapy. Our purpose in this study was to elucidate the IMiD-mediated anti-ATL mechanisms. Thirteen ATL-related cell lines were divided into LEN-sensitive or LEN-resistant groups. CRBN knockdown (KD) led to a loss of LEN efficacy and IKZF2-KD-induced LEN efficacy in resistant cells. DNA microarray analysis demonstrated distinct transcriptional alteration after LEN treatment between LEN-sensitive and LEN-resistant ATL cell lines. Oral treatment of LEN for ATL cell-transplanted severe combined immunodeficiency (SCID) mice also indicated clear suppressive effects on tumor growth. Finally, a novel cereblon modulator (CELMoD), iberdomide (IBE), exhibited a broader and deeper spectrum of growth suppression to ATL cells with efficient IKZF2 degradation, which was not observed in other IMiD treatments. Based on these findings, our study strongly supports the novel therapeutic advantages of IBE against aggressive and relapsed ATL.

16.
EMBO J ; 27(4): 629-41, 2008 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-18239685

RESUMEN

Nuclear factor kappa B (NF-kappaB) is a key mediator of inflammation. Unchecked NF-kappaB signalling can engender autoimmune pathologies and cancers. Here, we show that Tax1-binding protein 1 (TAX1BP1) is a negative regulator of TNF-alpha- and IL-1beta-induced NF-kappaB activation and that binding to mono- and polyubiquitin by a ubiquitin-binding Zn finger domain in TAX1BP1 is needed for TRAF6 association and NF-kappaB inhibition. Mice genetically knocked out for TAX1BP1 are born normal, but develop age-dependent inflammatory cardiac valvulitis, die prematurely, and are hypersensitive to low doses of TNF-alpha and IL-1beta. TAX1BP1-/- cells are more highly activated for NF-kappaB than control cells when stimulated with TNF-alpha or IL-1beta. Mechanistically, TAX1BP1 acts in NF-kappaB signalling as an essential adaptor between A20 and its targets.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Cardiopatías/metabolismo , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , FN-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Animales , Femenino , Proteínas Activadoras de GTPasa/metabolismo , Válvulas Cardíacas , Hipersensibilidad/inmunología , Interleucina-1beta/inmunología , Interleucina-1beta/farmacología , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/farmacología
17.
IJID Reg ; 2: 126-129, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35757073

RESUMEN

Objective: Gastric cancer is an important cause of mortality in Sabah, Malaysia, but the prevalence of Helicobacter pylori infection in this state is unknown. Serology is an important tool for the surveillance of H. pylori infection. The objective of this study was to determine the prevalence of H. pylori infection by serology, and to provide information for policy discussions on H. pylori control programmes in Sabah. Methods: This cross-sectional study analysed serum samples collected from blood donors in a hospital in Kota Kinabalu, Sabah. H. pylori antibody concentration was measured using a commercially available kit. Results: The prevalence of H. pylori was 28.4% (204/718), and the infection rate was highest in subjects aged 30-39 years. Men were more likely to be infected than women. The H. pylori infection rate was highest among those of Kadazan (19.1%) ethnicity, followed by Dusun (15.7%), Bajau (14.7%) and Rungus (10.8%). Binary logistic regression analysis indicated that Chinese (P=0.026) and Malay (P=0.035) ethnicities were protective against H. pylori infection compared with other ethnicities. Conclusions: The seropositivity rate of H. pylori in this study was similar to the overall seropositivity rate in Malaysia; however, Chinese and Malay ethnicities were found to be protective against H. pylori infection.

18.
Commun Biol ; 5(1): 535, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654946

RESUMEN

Both natural viral infections and therapeutic interventions using viral vectors pose significant risks of malignant transformation. Monitoring for clonal expansion of infected cells is important for detecting cancer. Here we developed a novel method of tracking clonality via the detection of transgene integration sites. RAISING (Rapid Amplification of Integration Sites without Interference by Genomic DNA contamination) is a sensitive, inexpensive alternative to established methods. Its compatibility with Sanger sequencing combined with our CLOVA (Clonality Value) software is critical for those without access to expensive high throughput sequencing. We analyzed samples from 688 individuals infected with the retrovirus HTLV-1, which causes adult T-cell leukemia/lymphoma (ATL) to model our method. We defined a clonality value identifying ATL patients with 100% sensitivity and 94.8% specificity, and our longitudinal analysis also demonstrates the usefulness of ATL risk assessment. Future studies will confirm the broad applicability of our technology, especially in the emerging gene therapy sector.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T del Adulto , Adulto , Secuenciación de Nucleótidos de Alto Rendimiento , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Leucemia-Linfoma de Células T del Adulto/genética , Leucemia-Linfoma de Células T del Adulto/patología , Leucemia-Linfoma de Células T del Adulto/terapia , Transgenes , Integración Viral/genética
19.
Blood ; 114(14): 2961-8, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19657116

RESUMEN

Adult T-cell leukemia (ATL) is a T-cell malignancy caused by human T lymphotropic virus type I, and presents as an aggressive leukemia with characteristic widespread leukemic cell infiltration into visceral organs and skin. The molecular mechanisms associated with leukemic cell infiltration are poorly understood. We have used mouse models of ATL to investigate the role of chemokines in this process. Transfer of splenic lymphomatous cells from transgenic to SCID mice reproduces a leukemia and lymphoma that is histologically identical to human disease. It could be shown that lymphomatous cells exhibit specific chemotactic activity in response to stromal cell-derived factor-1alpha (SDF-1alpha). Lymphomatous cells exhibited surface expression of CXCR4, the specific receptor of SDF-1alpha. AMD3100, a CXCR4 antagonist, was found to inhibit both SDF-1alpha-induced migration and phosphorylation of extracellular signal-related kinase 1/2. Investigation of cultured cells from human ATL patients revealed identical findings. Using the SCID mouse model, it could be demonstrated that AMD3100 inhibited infiltration of lymphomatous cells into liver and lung tissues in vivo. These results demonstrate the involvement of the SDF-1alpha/CXCR4 interaction as one mechanism of leukemic cell migration and this may provide a novel target as part of combination therapy for ATL.


Asunto(s)
Fármacos Anti-VIH/farmacología , Movimiento Celular/efectos de los fármacos , Quimiocina CXCL12/antagonistas & inhibidores , Compuestos Heterocíclicos/farmacología , Virus Linfotrópico T Tipo 1 Humano/genética , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Receptores CXCR4/antagonistas & inhibidores , Adulto , Anciano , Animales , Bencilaminas , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Ciclamas , Femenino , Productos del Gen tax/genética , Humanos , Immunoblotting , Técnicas para Inmunoenzimas , Leucemia-Linfoma de Células T del Adulto/metabolismo , Leucemia-Linfoma de Células T del Adulto/patología , Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Ratones Transgénicos , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Biochim Biophys Acta Mol Cell Res ; 1867(2): 118615, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31765670

RESUMEN

N-myc downstream-regulated gene 2 (NDRG2) as a tumor suppressor is frequently downregulated in human T-lymphotropic retrovirus (HTLV-1)-infected adult T-cell leukemia (ATL) and variety of cancers, and negatively regulates PI3K signaling pathways through dephosphorylation of PTEN with protein phosphatase 2A (PP2A). We recently identified that protein arginine methyltransferase 5 (PRMT5) is one of novel NDRG2 binding proteins and the knockdown of PRMT5 induces cell apoptosis with degradation of several signaling molecules. To investigate how the apoptosis is induced by the knockdown PRMT5 expression, heat shock protein 90 alpha (HSP90A) was identified as a binding protein for NDRG2 or PRMT5 by immunoprecipitation-mass analysis. NDRG2/PP2A complex inhibited arginine methyltransferase activity of PRMT5 through dephosphorylation at Serine 335 (S335); however, in NDRG2low ATL-related cells, highly phosphorylated PRMT5 at S335 was mainly localized in cytoplasm with binding to HSP90A, resulting in enhancing arginine-methylation at the middle domain (R345 and R386). Since knockdown of PRMT5 expression or forced expression of HSP90A with alanine replacement of R345 or R386 induced apoptosis with the degradation of client proteins in NDRG2low ATL-related and other cancer cells, we here identified that the novel arginine methylations of HSP90A are essential for maintenance of its function in NDRG2low ATL and other cancer cells.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Arginina/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Línea Celular Tumoral , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/genética , Humanos , Leucemia-Linfoma de Células T del Adulto/metabolismo , Leucemia-Linfoma de Células T del Adulto/patología , Metilación , Fosforilación , Unión Proteica , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/genética , Proteolisis , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA