Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Cell ; 73(4): 645-654.e13, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30612878

RESUMEN

Ribosome is the most abundant RNA-protein complex in a cell, and many copies of the ribosomal RNA gene (rDNA) have to be maintained. However, arrays of tandemly repeated rDNA genes can lose the copies by intra-repeat recombination. Loss of the rDNA copies of Saccharomyces cerevisiae is counteracted by gene amplification whereby the number of rDNA repeats stabilizes around 150 copies, suggesting the presence of a monitoring mechanism that counts and adjusts the number. Here, we report that, in response to rDNA copy loss, the upstream activating factor (UAF) for RNA polymerase I that transcribes the rDNA is released and directly binds to a RNA polymerase II-transcribed gene, SIR2, whose gene products silence rDNA recombination, to repress. We show that the amount of UAF determines the rDNA copy number that is stably maintained. UAF ensures rDNA production not only by rDNA transcription activation but also by its copy-number maintenance.


Asunto(s)
Variaciones en el Número de Copia de ADN , Dosificación de Gen , ARN Polimerasa I/metabolismo , ARN de Hongos/genética , ARN Ribosómico/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Sitios de Unión , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , Unión Proteica , ARN Polimerasa I/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/genética , Sirtuina 2/metabolismo , Factores de Transcripción/genética
2.
J Cell Sci ; 136(23)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37990810

RESUMEN

The stress response is one of the most fundamental cellular processes. Although the molecular mechanisms underlying responses to a single stressor have been extensively studied, cellular responses to multiple stresses remain largely unknown. Here, we characterized fission yeast cellular responses to a novel stress inducer, non-thermal atmospheric-pressure plasma. Plasma irradiation generates ultraviolet radiation, electromagnetic fields and a variety of chemically reactive species simultaneously, and thus can impose multiple stresses on cells. We applied direct plasma irradiation to fission yeast and showed that strong plasma irradiation inhibited fission yeast growth. We demonstrated that mutants lacking sep1 and ace2, both of which encode transcription factors required for proper cell separation, were resistant to plasma irradiation. Sep1-target transcripts were downregulated by mild plasma irradiation. We also demonstrated that plasma irradiation inhibited the target of rapamycin kinase complex 1 (TORC1). These observations indicate that two pathways, namely the Sep1-Ace2 cell separation pathway and TORC1 pathway, operate when fission yeast cope with multiple stresses induced by plasma irradiation.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Rayos Ultravioleta , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
3.
Genes Cells ; 26(8): 555-569, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33993586

RESUMEN

Ribonucleotides incorporated in the genome are a source of endogenous DNA damage and also serve as signals for repair. Although recent advances of ribonucleotide detection by sequencing, the balance between incorporation and repair of ribonucleotides has not been elucidated. Here, we describe a competitive sequencing method, Ribonucleotide Scanning Quantification sequencing (RiSQ-seq), which enables absolute quantification of misincorporated ribonucleotides throughout the genome by background normalization and standard adjustment within a single sample. RiSQ-seq analysis of cells harboring wild-type DNA polymerases revealed that ribonucleotides were incorporated nonuniformly in the genome with a 3'-shifted distribution and preference for GC sequences. Although ribonucleotide profiles in wild-type and repair-deficient mutant strains showed a similar pattern, direct comparison of distinct ribonucleotide levels in the strains by RiSQ-seq enabled evaluation of ribonucleotide excision repair activity at base resolution and revealed the strand bias of repair. The distinct preferences of ribonucleotide incorporation and repair create vulnerable regions associated with indel hotspots, suggesting that repair at sites of ribonucleotide misincorporation serves to maintain genome integrity and that RiSQ-seq can provide an estimate of indel risk.


Asunto(s)
Reparación del ADN , Ribonucleótidos/genética , ADN/química , ADN/genética , Genoma Fúngico , Tasa de Mutación , Ribonucleótidos/análisis , Saccharomyces cerevisiae
4.
Curr Genet ; 65(4): 883-885, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30904990

RESUMEN

To supply abundant ribosomes, multiple copies of ribosomal RNA genes (rDNA) are conserved from bacterial to human cells. In eukaryotic genomes, clusters of tandemly repeated rDNA units are present, and their number is stably maintained. Due to high level of transcription of rRNA genes, the repetitive structure is prone to rearrangement. In budding yeast, rDNA homeostasis can compensate for this by the regulation of recombination events that will change the copy number. The histone deacetylase Sir2 plays a key role in rDNA copy maintenance and its expression level determines a state of "maintenance" or "amplification" of rDNA copy number. We recently showed that Upstream Activating Factors (UAF) for RNA polymerase I act as a RNA polymerase II repressor of SIR2 transcription in response to rDNA copy loss. Furthermore, the amount of UAF, which is limited in the cell, determines the stable copy number of rDNA and is a molecular switch for rDNA recovery. In this mini-review, we propose a "Musical Chair" model for rDNA copy counting as mediated by UAF and Sir2. The model describes how a straightforward molecular mechanism can account for the "cellular memory" of the proper rDNA copy number.


Asunto(s)
Genes de ARNr/genética , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Factores de Transcripción/genética , Variaciones en el Número de Copia de ADN/genética , ADN Ribosómico/genética , Saccharomyces cerevisiae/genética
5.
Biochem Biophys Res Commun ; 496(4): 1284-1290, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29410177

RESUMEN

Fission yeast Pik1p is one of three phosphatidylinositol 4-kinases associated with the Golgi complex, but its function is not fully understood. Deletion of pot1+ causes telomere degradation and chromosome circularization. We searched for the gene which becomes synthetically lethal with pot1Δ. We obtained a novel pik1 mutant, pik1-1, which is synthetically lethal with pot1Δ. We found phosphoinositol 4-phosphate in the Golgi was reduced in pik1-1. To investigate the mechanism of the lethality of the pot1Δ pik1-1 double mutant, we constructed the nmt-pot1-aid pik1-1 strain, where Pot1 function becomes low by drugs, which leads to telomere loss and chromosome circularization, and found pik1-1 mutation does not affect telomere resection and chromosome circularization. Thus, our results suggest that pik1+ is required for the maintenance of circular chromosomes.


Asunto(s)
Apoptosis/genética , Mutación/genética , Fosfoproteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/fisiología , Telómero/genética , Schizosaccharomyces/citología
6.
Mol Cell ; 31(2): 178-89, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18657501

RESUMEN

Heterochromatic gene silencing at the pericentromeric DNA repeats in fission yeast requires the RNA interference (RNAi) machinery. The RNA-induced transcriptional silencing (RITS) complex mediates histone H3 lysine 9 (H3K9) methylation and recruits the RNA-dependent RNA polymerase complex (RDRC) to promote double-stranded RNA (dsRNA) synthesis and siRNA generation. Here we show that ectopic expression of a long hairpin RNA bypasses the requirement for chromatin-dependent steps in siRNA generation. The ability of hairpin-produced siRNAs to silence homologous sequences in trans is subject to local chromatin structure, requires HP1, and correlates with antisense transcription at the target locus. Furthermore, although hairpin siRNAs can be produced in the absence of RDRC, trans-silencing of reporter genes by hairpin-produced siRNAs is completely dependent on the dsRNA synthesis activity of RDRC. These results provide insights into the regulation of siRNA action and reveal roles for cis-dsRNA synthesis and HP1 in siRNA-mediated heterochromatin assembly.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , ADN sin Sentido/genética , Heterocromatina/metabolismo , ARN Interferente Pequeño/metabolismo , Transcripción Genética , Adenosina Trifosfatasas/metabolismo , Catálisis , Centrómero/metabolismo , Homólogo de la Proteína Chromobox 5 , Silenciador del Gen , Histonas/metabolismo , Patrón de Herencia , Lisina/metabolismo , Metilación , Modelos Genéticos , Conformación de Ácido Nucleico , ARN Interferente Pequeño/química , ARN Polimerasa Dependiente del ARN/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transgenes
7.
Genes Cells ; 19(6): 517-27, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24766403

RESUMEN

In forward genetics, identification of mutations is a time-consuming and laborious process. Modern whole-genome sequencing, coupled with bioinformatics analysis, has enabled fast and cost-effective mutation identification. However, for many experimental researchers, bioinformatics analysis is still a difficult aspect of whole-genome sequencing. To address this issue, we developed a browser-accessible and easy-to-use bioinformatics tool called Mutation discovery (Mudi; http://naoii.nig.ac.jp/mudi_top.html), which enables 'one-click' identification of causative mutations from whole-genome sequence data. In this study, we optimized Mudi for pooled-linkage analysis aimed at identifying mutants in yeast model systems. After raw sequencing data are uploaded, Mudi performs sequential analysis, including mapping, detection of variant alleles, filtering and removal of background polymorphisms, prioritization, and annotation. In an example study of suppressor mutants of ptr1-1 in the fission yeast Schizosaccharomyces pombe, pooled-linkage analysis with Mudi identified mip1(+) , a component of Target of Rapamycin Complex 1 (TORC1), as a novel component involved in RNA interference (RNAi)-related cell-cycle control. The accessibility of Mudi will accelerate systematic mutation analysis in forward genetics.


Asunto(s)
Biología Computacional/métodos , Genoma Fúngico , Internet , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/genética , Mutación , Interferencia de ARN , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Supresión Genética , Serina-Treonina Quinasas TOR/genética , Interfaz Usuario-Computador
8.
Yeast ; 32(8): 567-81, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26081484

RESUMEN

Isolation of a 'tight' conditional mutant of a gene of interest is an effective way of studying the functions of essential genes. Strategies that use ubiquitin-mediated protein degradation to eliminate the product of a gene of interest, such as heat-inducible degron (td) and auxin-inducible degron (AID), are powerful methods for constructing conditional mutants. However, these methods do not work with some genes. Here, we describe an improved AID system (iAID) for isolating tight conditional mutants in the budding yeast Saccharomyces cerevisiae. In this method, transcriptional repression by the 'Tet-OFF' promoter is combined with proteolytic elimination of the target protein by the AID system. To provide examples, we describe the construction of tight mutants of the replication factors Dpb11 and Mcm10, dpb11-iAID, and mcm10-iAID. Because Dpb11 and Mcm10 are required for the initiation of DNA replication, their tight mutants are unable to enter S phase. This is the case for dpb11-iAID and mcm10-iAID cells after the addition of tetracycline and auxin. Both the 'Tet-OFF' promoter and the AID system have been shown to work in model eukaryotes other than budding yeast. Therefore, the iAID system is not only useful in budding yeast, but also can be applied to other model systems to isolate tight conditional mutants.


Asunto(s)
Marcación de Gen/métodos , Ácidos Indolacéticos/farmacología , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Mutagénesis , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/efectos de los fármacos
9.
Biochem Biophys Res Commun ; 427(1): 143-7, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22989756

RESUMEN

Ago1, an effector protein of RNA interference (RNAi), regulates heterochromatin silencing and cell cycle arrest in fission yeast. However, the mechanism by which Ago1 controls cell cycle checkpoint following hydroxyurea (HU) treatment has not been elucidated. In this study, we show that Ago1 and other RNAi factors control cell cycle checkpoint following HU treatment via a mechanism independent of silencing. While silencing requires dcr1(+), the overexpression of ago1(+) alleviated the cell cycle defect in dcr1Δ. Ago1 interacted with the mRNA export factor, Ptr1. The ptr1-1 mutation impaired cell cycle checkpoint but gene silencing was unaffected. Genetic analysis revealed that the regulation of cell cycle checkpoint by ago1(+) is dependent on ptr1(+). Nuclear accumulation of poly(A)(+) RNAs was detected in mutants of ago1(+) and ptr1(+), suggesting there is a functional link between the cell cycle checkpoint and RNAi-mediated RNA quality control.


Asunto(s)
Proteínas Argonautas/metabolismo , Puntos de Control del Ciclo Celular/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Interferencia de ARN , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Proteínas Argonautas/genética , Núcleo Celular/metabolismo , Heterocromatina/metabolismo , Hidroxiurea/farmacología , Mutación , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Edición de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
10.
Nat Struct Mol Biol ; 14(3): 200-7, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17310250

RESUMEN

The RNA-induced transcriptional silencing (RITS) complex, containing Ago1, Chp1, Tas3 and centromeric small interfering RNAs (siRNAs), is required for heterochromatic gene silencing at centromeres. Here, we identify a second fission yeast Argonaute complex (Argonaute siRNA chaperone, ARC), which contains, in addition to Ago1, two previously uncharacterized proteins, Arb1 and Arb2, both of which are required for histone H3 Lys9 (H3-K9) methylation, heterochromatin assembly and siRNA generation. Furthermore, whereas siRNAs in the RITS complex are mostly single-stranded, siRNAs associated with ARC are mostly double-stranded, indicating that Arb1 and Arb2 inhibit the release of the siRNA passenger strand from Ago1. Consistent with this observation, purified Arb1 inhibits the slicer activity of Ago1 in vitro, and purified catalytically inactive Ago1 contains only double-stranded siRNA. Finally, we show that slicer activity is required for the siRNA-dependent association of Ago1 with chromatin and for the spreading of histone H3-K9 methylation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Heterocromatina/metabolismo , Complejos Multiproteicos/metabolismo , ARN de Hongos/biosíntesis , ARN Interferente Pequeño/biosíntesis , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas Argonautas , Centrómero/metabolismo , Histonas/metabolismo , Metilación , Modelos Genéticos , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Proteínas de Unión al ARN , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/aislamiento & purificación , Fracciones Subcelulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA