Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Genet ; 20(6): e1011337, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38935810

RESUMEN

Sperm heads contain not only the nucleus but also the acrosome which is a distinctive cap-like structure located anterior to the nucleus and is derived from the Golgi apparatus. The Golgi Associated RAB2 Interactors (GARINs; also known as FAM71) protein family shows predominant expression in the testis and all possess a RAB2-binding domain which confers binding affinity to RAB2, a small GTPase that is responsible for membrane transport and vesicle trafficking. Our previous study showed that GARIN1A and GARIN1B are important for acrosome biogenesis and that GARIN1B is indispensable for male fertility in mice. Here, we generated KO mice of other Garins, namely Garin2, Garin3, Garin4, Garin5a, and Garin5b (Garin2-5b). Using computer-assisted morphological analysis, we found that the loss of each Garin2-5b resulted in aberrant sperm head morphogenesis. While the fertilities of Garin2-/- and Garin4-/- males are normal, Garin5a-/- and Garin5b-/- males are subfertile, and Garin3-/- males are infertile. Further analysis revealed that Garin3-/- males exhibited abnormal acrosomal morphology, but not as severely as Garin1b-/- males; instead, the amounts of membrane proteins, particularly ADAM family proteins, decreased in Garin3 KO spermatozoa. Moreover, only Garin4 KO mice exhibit vacuoles in the sperm head. These results indicate that GARINs assure correct head morphogenesis and some members of the GARIN family function distinctively in male fertility.

2.
Proc Natl Acad Sci U S A ; 120(39): e2304409120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37725640

RESUMEN

Calcium signaling is critical for successful fertilization. In spermatozoa, calcium influx into the sperm flagella mediated by the sperm-specific CatSper calcium channel is necessary for hyperactivated motility and male fertility. CatSper is a macromolecular complex and is repeatedly arranged in zigzag rows within four linear nanodomains along the sperm flagella. Here, we report that the Tmem249-encoded transmembrane (TM) domain-containing protein, CATSPERθ is essential for the CatSper channel assembly during sperm tail formation. CATSPERθ facilitates the channel assembly by serving as a scaffold for a pore-forming subunit CATSPER4. CATSPERθ is specifically localized at the interface of a CatSper dimer and can self-interact, suggesting its potential role in CatSper dimer formation. Male mice lacking CATSPERθ are infertile because the sperm lack the entire CatSper channel from sperm flagella, rendering sperm unable to hyperactivate, regardless of their normal expression in the testis. In contrast, genetic abrogation of any of the other CatSper TM subunits results in loss of CATSPERθ protein in the spermatid cells during spermatogenesis. CATSPERθ might act as a checkpoint for the properly assembled CatSper channel complex to traffic to sperm flagella. This study provides insights into the CatSper channel assembly and elucidates the physiological role of CATSPERθ in sperm motility and male fertility.


Asunto(s)
Semen , Motilidad Espermática , Animales , Masculino , Ratones , Membrana Celular , Canales Iónicos , Proteínas de la Membrana/genética , Proteínas de Plasma Seminal , Motilidad Espermática/genética , Cola del Espermatozoide , Espermatozoides
3.
Proc Natl Acad Sci U S A ; 120(33): e2304943120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549290

RESUMEN

Conventional dendritic cells (cDCs) are required for peripheral T cell homeostasis in lymphoid organs, but the molecular mechanism underlying this requirement has remained unclear. We here show that T cell-specific CD47-deficient (Cd47 ΔT) mice have a markedly reduced number of T cells in peripheral tissues. Direct interaction of CD47-deficient T cells with cDCs resulted in activation of the latter cells, which in turn induced necroptosis of the former cells. The deficiency and cell death of T cells in Cd47 ΔT mice required expression of its receptor signal regulatory protein α on cDCs. The development of CD4+ T helper cell-dependent contact hypersensitivity and inhibition of tumor growth by cytotoxic CD8+ T cells were both markedly impaired in Cd47 ΔT mice. CD47 on T cells thus likely prevents their necroptotic cell death initiated by cDCs and thereby promotes T cell survival and function.


Asunto(s)
Antígeno CD47 , Linfocitos T CD8-positivos , Animales , Ratones , Antígeno CD47/genética , Antígeno CD47/metabolismo , Linfocitos T CD8-positivos/metabolismo , Supervivencia Celular , Células Dendríticas/metabolismo , Necroptosis , Receptores Inmunológicos/metabolismo
4.
Dev Biol ; 488: 104-113, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35618043

RESUMEN

Immunity-related GTPases (IRGs), also known as p47 GTPases, are a family of interferon-inducible proteins that play roles in immunity defense against intracellular pathogens. Although the molecular functions of IRGs have been well studied, the function of the family member, IRGC1, remains unclear. IRGC1 is unique among IRGs because its expression is not induced by interferon and it is expressed predominantly in the testis. Further, IRGC1 is well conserved in mammals unlike other IRGs. Here, we knocked out (KO) Irgc1 in mice using the CRISPR/Cas9 system and found that the fertility of Irgc1 KO males was severely impaired because of abnormal sperm motility. Further analyses with a transmission electron microscope revealed that the fibrous sheath (FS), an accessory structure of the sperm tail, was disorganized in Irgc1 KO mice. In addition, IRGC1 was detected in the sperm tail and fractionated with FS proteins. These results suggest that IRGC1 is a component of the FS and is involved in the correct formation of the FS.


Asunto(s)
Motilidad Espermática , Testículo , Animales , Masculino , Ratones , GTP Fosfohidrolasas/metabolismo , Interferones/metabolismo , Mamíferos , Ratones Noqueados , Proteínas/metabolismo , Cola del Espermatozoide/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo
5.
J Virol ; 94(6)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31852793

RESUMEN

Human herpesvirus 6B (HHV-6B), a T-lymphotropic virus, infects almost exclusively humans. An animal model of HHV-6B has not been available. Here, we report the first animal model to mimic HHV-6B pathogenesis; the model is based on humanized mice in which human immune cells were engrafted and maintained. For HHV-6B replication, adequate human T-cell activation (which becomes susceptible to HHV-6B) is necessary in this murine model. Here, we found that an additional transfer of human mononuclear cells to humanized mice resulted in an explosive proliferation of human activated T cells, which could be representative of graft-versus-host disease (GVHD) because the primary transfer of human cells was not sufficient to increase the number and ratio of human T cells. Mice infected with HHV-6B became weak and/or died approximately 7 to 14 days later. Quantitative PCR analysis revealed that the spleen and lungs were the major sites of HHV-6B replication in this model, and this was corroborated by the detection of viral proteins in these organs. Histological analysis also revealed the presence of megakaryocytes, indicating HHV-6B infection. Multiplex analysis of cytokines/chemokines in sera from the infected mice showed secretions of human cytokines/chemokines as reported for both in vitro infection and clinical samples, indicating that the secreted cytokines could affect pathogenesis. This is the first animal model showing HHV-6B pathogenesis, and it will be useful for elucidating the pathogenicity of HHV-6B, which is related to GVHD and idiopathic pneumonia syndrome.IMPORTANCE Human herpesvirus 6B (HHV-6B) is a ubiquitous virus that establishes lifelong latent infection only in humans, and the infection can reactivate, with severe complications that cause major problems. A small-animal model of HHV-6B infection has thus been desired for research regarding the pathogenicity of HHV-6B and the development of antiviral agents. We generated humanized mice by transplantation with human hematopoietic stem cells, and here, we modified the model by providing an additional transfer of human mononuclear cells, providing the proper conditions for efficient HHV-6B infection. This is the first humanized mouse model to mimic HHV-6B pathogenesis, and it has great potential for research into the in vivo pathogenesis of HHV-6B.


Asunto(s)
Enfermedad Injerto contra Huésped/inmunología , Herpesvirus Humano 6/inmunología , Neumonía Viral/inmunología , Infecciones por Roseolovirus/inmunología , Animales , Línea Celular , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped/patología , Enfermedad Injerto contra Huésped/virología , Humanos , Megacariocitos/inmunología , Megacariocitos/patología , Megacariocitos/virología , Ratones , Ratones Noqueados , Neumonía Viral/patología , Neumonía Viral/virología , Infecciones por Roseolovirus/patología , Síndrome , Linfocitos T/inmunología , Linfocitos T/patología , Linfocitos T/virología
6.
Cancer Sci ; 110(7): 2296-2308, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31074083

RESUMEN

Vasohibin-2 (VASH2) is expressed in various cancers and promotes their progression. We recently reported that pancreatic cancer patients with higher VASH2 expression show poorer prognosis. Herein, we sought to characterize the role of VASH2 in pancreatic cancer. We used LSL-KrasG12D ; LSL-Trp53R172H ; Pdx-1-Cre (KPC) mice, a mouse model of pancreatic ductal adenocarcinoma (PDAC), and cells isolated from them (KPC cells). Knockdown of Vash2 from PDAC cells did not affect their proliferation, but decreased their migration. When Vash2-knockdown PDAC cells were orthotopically inoculated, liver metastasis and peritoneal dissemination were reduced, and the survival period was significantly prolonged. When KPC mice were crossed with Vash2-deficient mice, metastasis was significantly decreased in Vash2-deficient KPC mice. VASH2 was recently identified to have tubulin carboxypeptidase activity. VASH2 knockdown decreased, whereas VASH2 overexpression increased tubulin detyrosination of PDAC cells, and tubulin carboxypeptidase (TCP) inhibitor parthenolide inhibited VASH2-induced cell migration. We next clarified its role in the tumor microenvironment. Tumor angiogenesis was significantly abrogated in vivo when VASH2 was knocked down or deleted. We further examined genes downregulated by Vash2 knockdown in KPC cells, and found chemokines and cytokines that were responsible for the recruitment of myeloid derived suppressor cells (MDSC). Indeed, MDSC were accumulated in PDAC of KPC mice, and they were significantly decreased in Vash2-deficient KPC mice. These findings suggest that VASH2 plays an essential role in the metastasis of PDAC with multiple effects on both cancer cells and the tumor microenvironment, including tubulin detyrosination, tumor angiogenesis and evasion of tumor immunity.


Asunto(s)
Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Regulación hacia Arriba , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Citocinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Tubulina (Proteína)/metabolismo , Microambiente Tumoral
7.
Sci Adv ; 9(4): eade7607, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36696506

RESUMEN

Spermatozoa need to undergo an exocytotic event called the acrosome reaction before fusing with eggs. Although calcium ion (Ca2+) is essential for the acrosome reaction, its molecular mechanism remains unknown. Ferlin is a single transmembrane protein with multiple Ca2+-binding C2 domains, and there are six ferlins, dysferlin (DYSF), otoferlin (OTOF), myoferlin (MYOF), fer-1-like 4 (FER1L4), FER1L5, and FER1L6, in mammals. Dysf, Otof, and Myof knockout mice have been generated, and each knockout mouse line exhibited membrane fusion disorders such as muscular dystrophy in Dysf, deafness in Otof, and abnormal myogenesis in Myof. Here, by generating mutant mice of Fer1l4, Fer1l5, and Fer1l6, we found that only Fer1l5 is required for male fertility. Fer1l5 mutant spermatozoa could migrate in the female reproductive tract and reach eggs, but no acrosome reaction took place. Even a Ca2+ ionophore cannot induce the acrosome reaction in Fer1l5 mutant spermatozoa. These results suggest that FER1L5 is the missing link between Ca2+ and the acrosome reaction.


Asunto(s)
Proteínas Musculares , Testículo , Masculino , Femenino , Animales , Ratones , Membrana Celular/metabolismo , Proteínas Musculares/metabolismo , Testículo/metabolismo , Fusión de Membrana , Fertilidad , Espermatozoides/metabolismo , Mamíferos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
8.
Andrology ; 11(5): 840-848, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36464740

RESUMEN

BACKGROUND: Lactate dehydrogenase C (LDHC) is specifically expressed in male germ cells and plays critical roles in glycolysis. Glycolysis is required to supply energy for sperm motility. Previous studies showed that Ldhc knock-out mice exhibit impaired sperm motility. OBJECTIVES: We established human LDHC knock-in (hLDHC KI) mice and examined whether hLDHC KI mice can be used to assess LDHC-targeting drugs. MATERIAL AND METHODS: HLDHC was knocked-in to the mouse Ldhc (mLdhc) allele using the CRISPR/Cas9 system. Mating tests, sperm motility examinations with a computer-assisted sperm analysis (CASA) system, and in vitro fertilization (IVF) were performed. Furthermore, the effect of an LDH inhibitor was analyzed with CASA and IVF. RESULTS: HLDHC was detected at the protein level in hLDHC KI spermatozoa. hLDHC KI mice exhibited comparable sperm motility and male fertility to wild-type (WT) mice. When we performed IVF using the LDH inhibitor more specific to hLDHC than mLDHC, fertilization rates were reduced in hLDHC KI mice but not in WT mice. DISCUSSION AND CONCLUSION: Our results reveal that hLDHC can rescue the absence of mLDHC. Differences in the effect of the LDH inhibitor between WT and hLDHC KI mice indicate that hLDHC KI mice can be a good model to assess hLDHC inhibitors for preclinical contraceptive studies.


Asunto(s)
Semen , Motilidad Espermática , Humanos , Masculino , Ratones , Animales , Espermatozoides/metabolismo , Anticonceptivos , Ratones Noqueados
9.
bioRxiv ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36993167

RESUMEN

Calcium signaling is critical for successful fertilization. In spermatozoa, calcium influx into the sperm flagella mediated by the sperm specific CatSper calcium channel is necessary for hyperactivated motility and male fertility. CatSper is a macromolecular complex and is repeatedly arranged in zigzag rows within four linear nanodomains along the sperm flagella. Here, we report that the Tmem249 -encoded transmembrane domain containing protein, CATSPERθ, is essential for the CatSper channel assembly during sperm tail formation. CATSPERθ facilitates the channel assembly by serving as a scaffold for a pore forming subunit CATSPER4. CATSPERθ is specifically localized at the interface of a CatSper dimer and can self-interact, suggesting its potential role in CatSper dimer formation. Male mice lacking CATSPERθ are infertile because the sperm lack the entire CatSper channel from sperm flagella, rendering sperm unable to hyperactivate, regardless of their normal expression in the testis. In contrast, genetic abrogation of any of the other CatSper transmembrane subunits results in loss of CATSPERθ protein in the spermatid cells during spermatogenesis. CATSPERθ might acts as a checkpoint for the properly assembled CatSper channel complex to traffic to sperm flagella. This study provides insights into the CatSper channel assembly and elucidates the physiological role of CATSPERθ in sperm motility and male fertility.

10.
Front Immunol ; 14: 1294814, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162643

RESUMEN

Tumor-associated macrophages (TAMs) are abundant in the tumor microenvironment and are considered potential targets for cancer immunotherapy. To examine the antitumor effects of agents targeting human TAMs in vivo, we here established preclinical tumor xenograft models based on immunodeficient mice that express multiple human cytokines and have been reconstituted with a human immune system by transplantation of human CD34+ hematopoietic stem and progenitor cells (HIS-MITRG mice). HIS-MITRG mice supported the growth of both human cell line (Raji)- and patient-derived B cell lymphoma as well as the infiltration of human macrophages into their tumors. We examined the potential antitumor action of an antibody to human SIRPα (SE12C3) that inhibits the interaction of CD47 on tumor cells with SIRPα on human macrophages and thereby promotes Fcγ receptor-mediated phagocytosis of the former cells by the latter. Treatment with the combination of rituximab (antibody to human CD20) and SE12C3 inhibited Raji tumor growth in HIS-MITRG mice to a markedly greater extent than did rituximab monotherapy. This enhanced antitumor effect was dependent on human macrophages and attributable to enhanced rituximab-dependent phagocytosis of lymphoma cells by human macrophages. Treatment with rituximab and SE12C3 also induced reprogramming of human TAMs toward a proinflammatory phenotype. Furthermore, the combination treatment essentially prevented the growth of patient-derived diffuse large B cell lymphoma in HIS-MITRG mice. Our findings thus support the study of HIS-MITRG mice as a model for the preclinical evaluation in vivo of potential therapeutics, such as antibodies to human SIRPα, that target human TAMs.


Asunto(s)
Antígenos de Diferenciación , Neoplasias , Humanos , Ratones , Animales , Rituximab/farmacología , Rituximab/uso terapéutico , Línea Celular Tumoral , Anticuerpos , Inmunoterapia , Modelos Animales de Enfermedad , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA