Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Ind Microbiol Biotechnol ; 49(1)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34543433

RESUMEN

MycG is a multifunctional P450 monooxygenase that catalyzes sequential hydroxylation and epoxidation or a single epoxidation in mycinamicin biosynthesis. In the mycinamicin-producing strain Micromonospora griseorubida A11725, very low-level accumulation of mycinamicin V generated by the initial C-14 allylic hydroxylation of MycG is observed due to its subsequent epoxidation to generate mycinamicin II, the terminal metabolite in this pathway. Herein, we investigated whether MycG can be engineered for production of the mycinamicin II intermediate as the predominant metabolite. Thus, mycG was subject to random mutagenesis and screening was conducted in Escherichia coli whole-cell assays. This enabled efficient identification of amino acid residues involved in reaction profile alterations, which included MycG R111Q/V358L, W44R, and V135G/E355K with enhanced monohydroxylation to accumulate mycinamicin V. The MycG V135G/E355K mutant generated 40-fold higher levels of mycinamicin V compared to wild-type M. griseorubida A11725. In addition, the E355K mutation showed improved ability to catalyze sequential hydroxylation and epoxidation with minimal mono-epoxidation product mycinamicin I compared to the wild-type enzyme. These approaches demonstrate the ability to selectively coordinate the catalytic activity of multifunctional P450s and efficiently produce the desired compounds.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Macrólidos , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hidroxilación , Oxidación-Reducción , Biosíntesis de Péptidos
2.
Artículo en Inglés | MEDLINE | ID: mdl-34242158

RESUMEN

A novel actinomycete, designated NUM-2625T, was isolated as an endophytic bacterium in aerial parts of Comarum salesowianum, an endemic species in the Altai, Himalaya mountain chain area, collected from Khasagt Khairkhan Mountain in Mongolia. The 16S rRNA gene sequence of strain NUM-2625T showed the highest similarity to Actinocatenispora thailandica TT2-10T (99.4 %), Actinocatenispora sera KV-744T (99.3 %), and Actinocatenispora rupis CS5-AC17T (97.7 %). Chemotaxonomic properties of strain NUM-2625T were essentially consistent with those of the genus Actinocatenispora, such as the presence of meso-diaminopimelic acid as the diagnostic diamino acid of the peptidoglycan, MK-9(H4) and MK-9(H6) as the major menaquinones, and iso-C16 : 0, iso-C15 : 0, iso-C14 : 0 3-OH, and anteiso-C17 : 0 as the major fatty acids. Meanwhile, digital DNA-DNA hybridization and average nucleotide identity values revealed a low relatedness between strain NUM-2625T and the other type strains of the genus Actinocatenispora. In addition, strain NUM-2625T exhibited several phenotypic properties that could be used to distinguish it from its closest relatives. Based on the results of polyphasic analyses, strain NUM-2625T represents a novel species in the genus Actinocatenispora, for which the name Actinocatenispora comari sp. nov. is proposed. The type strain is NUM-2625T (=NBRC 114660T=TBRC 13496T).


Asunto(s)
Micromonosporaceae/clasificación , Filogenia , Componentes Aéreos de las Plantas/microbiología , Rosácea/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Endófitos/clasificación , Endófitos/aislamiento & purificación , Ácidos Grasos/química , Micromonosporaceae/aislamiento & purificación , Mongolia , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
3.
Appl Microbiol Biotechnol ; 105(7): 2647-2661, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33710358

RESUMEN

Cytochrome P450 enzymes (P450s) are one of the major factors responsible for the diversity of metabolites produced through many biosynthetic and biodegradative processes in actinomycetes. P450s typically catalyze a single oxidative modification; however, several P450s have been identified with the unique ability to iteratively oxidize the same-site of the substrate. These P450s are capable of forming diverse compounds that affect biological processes, including alcohols, ketones, aldehydes, and carboxylic acids. Although further structural and functional studies are needed to elucidate the mechanisms that allow multistep oxidative modification, recent studies have revealed the enzymatic properties and reaction mechanisms of these P450s. This mini-review covers the current knowledge of P450s that catalyze the multistep oxidation reactions and contribute to the production of a wide variety of metabolites by selected actinomycete strains, along with insights into their application and utility. Understanding the characteristics of these remarkable enzymes will facilitate their utilization in biotechnological applications to create biologically active and other high-value compounds. KEY POINTS: • The multistep oxidation by P450s plays a key role in the diversity of metabolites. • The mechanisms that enable P450s to catalyze iterative oxidation remains unknown. • The effective use of P450s that iteratively oxidize the same-site is discussed.


Asunto(s)
Actinobacteria , Actinobacteria/metabolismo , Biotecnología , Catálisis , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidación-Reducción
4.
Appl Microbiol Biotechnol ; 104(8): 3403-3415, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32103316

RESUMEN

The cytochrome P450 monooxygenase RosC catalyzes the three-step oxidation reactions, which leads to the formation of a hydroxy, formyl, and carboxy group at C-20 during rosamicin biosynthesis in Micromonospora rosaria IFO13697. To determine if amino acid substitutions in RosC could allow for the control of the multistep oxidation reactions, we screened RosC random mutants. The RosC mutant RM30, with five amino acid substitutions (P107S, L176Q, S254N, V277A, and I319N), catalyzed only the first step of the oxidation reaction. Whole-cell assays using Escherichia coli cells expressing RosC mutants with single and double amino acid substitutions derived from RM30 indicated that P107S/L176Q, P107S/V277A, P107S/I319N, L176Q/V277A, L176Q/I319N, and S254N/V277A significantly reduced the catalytic activity of the second reaction, which is alcohol oxidation. Of the previously mentioned mutants, double mutants containing L176Q, which was presumed to occur in the FG loop region, lost the total catalytic activity of the third reaction (aldehyde oxidation). Additionally, an engineered M. rosaria strain with rosC disruption, which introduced the gene encoding the RosC mutants P107S/L176Q and P107S/V277A preferentially produced 20-dihydrorosamicin, which is formed after the first oxidation reaction of RosC.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Leucomicinas/biosíntesis , Micromonospora/enzimología , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Escherichia coli/genética , Mutación , Oxidación-Reducción
5.
Biol Pharm Bull ; 43(1): 179-183, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31902923

RESUMEN

Quorum sensing (QS) is a microbial signaling system that regulates the expression of many virulence genes. Herein, we studied five compounds-No. 1: (E)-2-methyl-3- (4-nitro-phenyl)-acrylaldehyde; No. 29-2: pimprinine [5-(1H-indol-3-yl)-2-methyloxazole]; No. 48: (2E,4E)-2-methyl-5-phenyl-2,4-pentadienoic acid; No. 74: (3E,5E)-5-methyl-6-(4-nitrophenyl)-hexa-3,5-dien-2-ol; and No. 130: methyphenazine-1-carboxylate-derived from an actinomycete metabolite library. These compounds were confirmed to be QS inhibitors that reduced violacein production in Chromobacterium violaceum CV026. Additionally, compounds No. 1, No. 74, and No. 130 significantly reduced fluorescent pigment production in Pseudomonas aeruginosa ATCC 27853.


Asunto(s)
Actinobacteria/metabolismo , Chromobacterium/metabolismo , Pseudomonas aeruginosa/metabolismo , Percepción de Quorum , Indoles/metabolismo , Pigmentos Biológicos/metabolismo , Pseudomonas aeruginosa/crecimiento & desarrollo
6.
J Ind Microbiol Biotechnol ; 41(9): 1451-6, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25047182

RESUMEN

Genetic engineering of post-polyketide synthase-tailoring genes can be used to generate new macrolide analogs through manipulation of the genes involved in their biosynthesis. Rosamicin, a 16-member macrolide antibiotic produced by Micromonospora rosaria IFO13697, contains a formyl group and an epoxide at C-20 and C-12/13 positions which are formed by the cytochrome P450 enzymes RosC and RosD, respectively. The D-mycinose biosynthesis genes in mycinamicin II biosynthesis gene cluster of Micomonospora guriseorubida A11725 were introduced into the rosC and rosD disruption mutants of M. rosaria IFO13697. The resulting engineered strains, M. rosaria TPMA0054 and TPMA0069, produced mycinosyl rosamicin derivatives, IZIV and IZV, respectively. IZIV was identified as a novel mycinosyl rosamicin derivative, 23-O-mycinosyl-20-deoxo-20-dihydrorosamicin.


Asunto(s)
Antibacterianos/biosíntesis , Proteínas Bacterianas/genética , Sistema Enzimático del Citocromo P-450/genética , Leucomicinas/biosíntesis , Micromonospora/genética , Micromonospora/metabolismo , Antibacterianos/química , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Sistema Enzimático del Citocromo P-450/metabolismo , Ingeniería Genética , Leucomicinas/química , Micromonospora/enzimología , Estructura Molecular , Mutación , Sintasas Poliquetidas/genética
7.
J Antibiot (Tokyo) ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926493

RESUMEN

A novel actinomycete, designated as TPMA0078T, was isolated from a soil sample collected in Shinjuku, Tokyo, Japan. 16S rRNA gene sequence analysis indicated that strain TPMA0078T belongs to the genus Actinoplanes and is closely related to Actinoplanes regularis IFO 12514T (99.86% 16S rRNA gene sequence similarity). The spores of strain TPMA0078T were motile, and the sporangia were cylindrical. The diamino acids in the cell wall peptidoglycan of strain TPMA0078T were meso-diaminopimelic acid and 3OH-meso-diaminopimelic acid. Whole-cell sugars were glucose and mannose, with galactose as a minor component. The major cellular fatty acids identified were iso-C15:0, iso-C16:0, and anteiso-C17:0. The predominant menaquinone was MK-9(H4), and the principal polar lipid was phosphatidylethanolamine. These chemotaxonomic properties of strain TPMA0078T were consistent with those of Actinoplanes. Meanwhile, digital DNA-DNA hybridization and average nucleotide identity values showed low relatedness between strain TPMA0078T and A. regularis NBRC 12514T. Furthermore, several phenotypic properties of strain TPMA0078T distinguished it from those of closely related species. Based on its genotypic and phenotypic characteristics, strain TPMA0078T represents a novel species of the genus Actinoplanes, for which the name Actinoplanes kirromycinicus sp. nov. is proposed. The type strain is TPMA0078T (=NBRC 116422T = TBRC 18262T).

8.
Antimicrob Agents Chemother ; 57(3): 1529-31, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23274670

RESUMEN

The cytochrome P450 enzyme-encoding genes rosC and rosD were cloned from the rosamicin biosynthetic gene cluster of Micromonospora rosaria IFO13697. The functions of RosC and RosD were demonstrated by gene disruption and complementation with M. rosaria and bioconversion of rosamicin biosynthetic intermediates with Escherichia coli expressing RosC and RosD. It is proposed that M. rosaria IFO13697 has two pathway branches that lead from the first desosaminyl rosamicin intermediate, 20-deoxo-20-dihydro-12,13-deepoxyrosamicin, to rosamicin.


Asunto(s)
Antibacterianos/biosíntesis , Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Leucomicinas/biosíntesis , Micromonospora/enzimología , Micromonospora/genética , Proteínas Bacterianas/genética , Sistema Enzimático del Citocromo P-450/genética , Escherichia coli/enzimología , Escherichia coli/genética , Eliminación de Gen , Prueba de Complementación Genética , Familia de Multigenes
9.
J Ind Microbiol Biotechnol ; 36(8): 1013-21, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19408026

RESUMEN

Some of the polyketide-derived bioactive compounds contain sugars attached to the aglycone core, and these sugars often impart specific biological activity to the molecule or enhance this activity. Mycinamicin II, a 16-member macrolide antibiotic produced by Micromonospora griseorubida A11725, contains a branched lactone and two different deoxyhexose sugars, D-desosamine and D-mycinose, at the C-5 and C-21 positions, respectively. The D-mycinose biosynthesis genes, mycCI, mycCII, mycD, mycE, mycF, mydH, and mydI, present in the M. griseorubida A11725 chromosome were introduced into pSET152 under the regulation of the promoter of the apramycin-resistance gene aac(3)IV. The resulting plasmid pSETmycinose was introduced into Micromonospora rosaria IFO13697 cells, which produce the 16-membered macrolide antibiotic rosamicin containing a branched lactone and D-desosamine at the C-5 position. Although the M. rosaria TPMA0001 transconjugant exhibited low rosamicin productivity, two new compounds, IZI and IZII, were detected in the ethylacetate extract from the culture broth. IZI was identified as a mycinosyl rosamicin derivative, 23-O-mycinosyl-20-deoxo-20-dihydro-12,13-deepoxyrosamicin (MW 741), which has previously been synthesized by a bioconversion technique. This is the first report on production of mycinosyl rosamicin-derivatives by a engineered biosynthesis approach. The integration site PhiC31attB was identified on M. rosaria IFO13697 chromosome, and the site lay within an ORF coding a pirin homolog protein. The pSETmycinose could be useful for stimulating the production of "unnatural" natural mycinosyl compounds by various actinomycete strains using the bacteriophage PhiC31 att/int system.


Asunto(s)
Antibacterianos/metabolismo , Ingeniería Genética/métodos , Leucomicinas/metabolismo , Macrólidos/metabolismo , Micromonospora/genética , Micromonospora/metabolismo , Bacteriófagos/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Genes Bacterianos , Vectores Genéticos , Datos de Secuencia Molecular , Plásmidos , Análisis de Secuencia de ADN
10.
FEMS Microbiol Lett ; 364(12)2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28582504

RESUMEN

The cytochrome P450 enzyme RosC catalyzes a two-step, hydroxylation and alcohol oxidation, oxidation reaction to form the C-20 formyl group in the biosynthesis of a 16-membered macrolide antibiotic rosamicin produced by Micromonospora rosaria IFO13697. RosC is presumed to be involved in the formation of 20-carboxyrosamicin because it has been isolated from the culture broth of M. rosaria. Here, we confirmed that RosC has catalytic activity, with E. coli expressing RosC converting rosamicin into 20-carboxyrosamicin. Therefore, it was revealed that RosC is a multifunctional P450 that catalyzes a three-step oxidation reaction that leads to the formation of the hydroxyl group, formyl group and carboxyl group at C-20 on the macrolactone ring in the rosamicin biosynthetic pathway. Moreover, the cytochrome P450 enzyme TylI, which is involved in formation of the formyl group of a 16-membered macrolide antibiotic tylosin produced by Streptomyces fradiae ATCC 19609, also converted rosamicin into 20-carboxyrosamicin.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Leucomicinas/metabolismo , Macrólidos/metabolismo , Antibacterianos/metabolismo , Biocatálisis , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxilación , Micromonospora/metabolismo , Oxidación-Reducción , Streptomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA