Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 588(7838): 521-525, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268893

RESUMEN

Myosin II is the motor protein that enables muscle cells to contract and nonmuscle cells to move and change shape1. The molecule has two identical heads attached to an elongated tail, and can exist in two conformations: 10S and 6S, named for their sedimentation coefficients2,3. The 6S conformation has an extended tail and assembles into polymeric filaments, which pull on actin filaments to generate force and motion. In 10S myosin, the tail is folded into three segments and the heads bend back and interact with each other and the tail3-7, creating a compact conformation in which ATPase activity, actin activation and filament assembly are all highly inhibited7,8. This switched-off structure appears to function as a key energy-conserving storage molecule in muscle and nonmuscle cells9-12, which can be activated to form functional filaments as needed13-but the mechanism of its inhibition is not understood. Here we have solved the structure of smooth muscle 10S myosin by cryo-electron microscopy with sufficient resolution to enable improved understanding of the function of the head and tail regions of the molecule and of the key intramolecular contacts that cause inhibition. Our results suggest an atomic model for the off state of myosin II, for its activation and unfolding by phosphorylation, and for understanding the clustering of disease-causing mutations near sites of intramolecular interaction.


Asunto(s)
Microscopía por Crioelectrón , Miosina Tipo II/antagonistas & inhibidores , Miosina Tipo II/ultraestructura , Animales , Sitios de Unión , Modelos Moleculares , Músculo Liso/química , Mutación , Miosina Tipo II/química , Miosina Tipo II/genética , Fosforilación , Unión Proteica , Conformación Proteica , Desplegamiento Proteico , Pavos
2.
Am J Respir Cell Mol Biol ; 70(1): 50-62, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37607215

RESUMEN

Progressive lung scarring because of persistent pleural organization often results in pleural fibrosis (PF). This process affects patients with complicated parapneumonic pleural effusions, empyema, and other pleural diseases prone to loculation. In PF, pleural mesothelial cells undergo mesomesenchymal transition (MesoMT) to become profibrotic, characterized by increased expression of α-smooth muscle actin and matrix proteins, including collagen-1. In our previous study, we showed that blocking PI3K/Akt signaling inhibits MesoMT induction in human pleural mesothelial cells (HPMCs) (1). However, the downstream signaling pathways leading to MesoMT induction remain obscure. Here, we investigated the role of mTOR complexes (mTORC1/2) in MesoMT induction. Our studies show that activation of the downstream mediator mTORC1/2 complex is, likewise, a critical component of MesoMT. Specific targeting of mTORC1/2 complex using pharmacological inhibitors such as INK128 and AZD8055 significantly inhibited transforming growth factor ß (TGF-ß)-induced MesoMT markers in HPMCs. We further identified the mTORC2/Rictor complex as the principal contributor to MesoMT progression induced by TGF-ß. Knockdown of Rictor, but not Raptor, attenuated TGF-ß-induced MesoMT in these cells. In these studies, we further show that concomitant activation of the SGK1/NDRG1 signaling cascade is essential for inducing MesoMT. Targeting SGK1 and NDRG1 with siRNA and small molecular inhibitors attenuated TGF-ß-induced MesoMT in HPMCs. Additionally, preclinical studies in our Streptococcus pneumoniae-mediated mouse model of PF showed that inhibition of mTORC1/2 with INK128 significantly attenuated the progression of PF in subacute and chronic injury. In conclusion, our studies demonstrate that mTORC2/Rictor-mediated activation of SGK1/NDRG1 is critical for MesoMT induction and that targeting this pathway could inhibit or even reverse the progression of MesoMT and PF.


Asunto(s)
Enfermedades Pleurales , Pleuresia , Animales , Ratones , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina , Factores de Transcripción , Factor de Crecimiento Transformador beta/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Fibrosis
3.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L353-L366, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38252666

RESUMEN

During the development of pleural fibrosis, pleural mesothelial cells (PMCs) undergo phenotypic switching from differentiated mesothelial cells to mesenchymal cells (MesoMT). Here, we investigated how external stimuli such as TGF-ß induce HPMC-derived myofibroblast differentiation to facilitate the development of pleural fibrosis. TGF-ß significantly increased di-phosphorylation but not mono-phosphorylation of myosin II regulatory light chain (RLC) in HPMCs. An increase in RLC di-phosphorylation was also found at the pleural layer of our carbon black bleomycin (CBB) pleural fibrosis mouse model, where it showed filamentous localization that coincided with alpha smooth muscle actin (αSMA) in the cells in the pleura. Among the protein kinases that can phosphorylate myosin II RLC, ZIPK (zipper-interacting kinase) protein expression was significantly augmented after TGF-ß stimulation. Furthermore, ZIPK gene silencing attenuated RLC di-phosphorylation, suggesting that ZIPK is responsible for di-phosphorylation of myosin II in HPMCs. Although TGF-ß significantly increased the expression of ZIP kinase protein, the change in ZIP kinase mRNA was marginal, suggesting a posttranscriptional mechanism for the regulation of ZIP kinase expression by TGF-ß. ZIPK gene knockdown (KD) also significantly reduced TGF-ß-induced upregulation of αSMA expression. This finding suggests that siZIPK attenuates myofibroblast differentiation of HPMCs. siZIPK diminished TGF-ß-induced contractility of HPMCs consistent with siZIPK-induced decrease in the di-phosphorylation of myosin II RLC. The present results implicate ZIPK in the regulation of the contractility of HPMC-derived myofibroblasts, phenotype switching, and myofibroblast differentiation of HPMCs.NEW & NOTEWORTHY Here, we highlight that ZIP kinase is responsible for di-phosphorylation of myosin light chain, which facilitates stress fiber formation and actomyosin-based cell contraction during mesothelial to mesenchymal transition in human pleural mesothelial cells. This transition has a significant impact on tissue remodeling and subsequent stiffness of the pleura. This study provides insight into a new therapeutic strategy for the treatment of pleural fibrosis.


Asunto(s)
Miofibroblastos , Enfermedades Pleurales , Ratones , Animales , Humanos , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Miofibroblastos/metabolismo , Fosforilación , Cadenas Ligeras de Miosina/metabolismo , Enfermedades Pleurales/metabolismo , Miosina Tipo II/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Fibrosis
4.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L419-L430, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38349126

RESUMEN

During the progression of pleural fibrosis, pleural mesothelial cells (PMCs) undergo a phenotype switching process known as mesothelial-mesenchymal transition (MesoMT). During MesoMT, transformed PMCs become myofibroblasts that produce increased extracellular matrix (ECM) proteins, including collagen and fibronectin (FN1) that is critical to develop fibrosis. Here, we studied the mechanism that regulates FN1 expression in myofibroblasts derived from human pleural mesothelial cells (HPMCs). We found that myocardin (Myocd), a transcriptional coactivator of serum response factor (SRF) and a master regulator of smooth muscle and cardiac muscle differentiation, strongly controls FN1 gene expression. Myocd gene silencing markedly inhibited FN1 expression. FN1 promoter analysis revealed that deletion of the Smad3-binding element diminished FN1 promoter activity, whereas deletion of the putative SRF-binding element increased FN1 promoter activity. Smad3 gene silencing decreased FN1 expression, whereas SRF gene silencing increased FN1 expression. Moreover, SRF competes with Smad3 for binding to Myocd. These results indicate that Myocd activates FN1 expression through Smad3, whereas SRF inhibits FN1 expression in HPMCs. In HPMCs, TGF-ß induced Smad3 nuclear localization, and the proximity ligation signal between Myocd and Smad3 was markedly increased after TGF-ß stimulation at nucleus, suggesting that TGF-ß facilitates nuclear translocation of Smad3 and interaction between Smad3 and Myocd. Moreover, Myocd and Smad3 were coimmunoprecipitated and isolated Myocd and Smad3 proteins directly bound each other. Chromatin immunoprecipitation assays revealed that Myocd interacts with the FN1 promoter at the Smad3-binding consensus sequence. The results indicate that Myocd regulates FN1 gene activation through interaction and activation of the Smad3 transcription factor.NEW & NOTEWORTHY During phenotype switching from mesothelial to mesenchymal, pleural mesothelial cells (PMCs) produce extracellular matrix (ECM) proteins, including collagen and fibronectin (FN1), critical components in the development of fibrosis. Here, we found that myocardin, a transcriptional coactivator of serum response factor (SRF), strongly activates FN1 expression through Smad3, whereas SRF inhibits FN1 expression. This study provides insights about the regulation of FN1 that could lead to the development of novel interventional approaches to prevent pleural fibrosis.


Asunto(s)
Fibronectinas , Proteínas Nucleares , Factor de Respuesta Sérica , Transactivadores , Humanos , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Fibronectinas/genética , Factores de Transcripción , Factor de Crecimiento Transformador beta/metabolismo , Colágeno , Fibrosis
5.
J Biol Chem ; 298(5): 101883, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35367209

RESUMEN

Mitochondria are fundamentally important in cell function, and their malfunction can cause the development of cancer, cardiovascular disease, and neuronal disorders. Myosin 19 (Myo19) shows discrete localization with mitochondria and is thought to play an important role in mitochondrial dynamics and function; however, the function of Myo19 in mitochondrial dynamics at the cellular and molecular levels is poorly understood. Critical missing information is whether Myo19 is a processive motor that is suitable for transportation of mitochondria. Here, we show for the first time that single Myo19 molecules processively move on actin filaments and can transport mitochondria in cells. We demonstrate that Myo19 dimers having a leucine zipper processively moved on cellular actin tracks in demembraned cells with a velocity of 50 to 60 nm/s and a run length of ∼0.4 µm, similar to the movement of isolated mitochondria from Myo19 dimer-transfected cells on actin tracks, suggesting that the Myo19 dimer can transport mitochondria. Furthermore, we show single molecules of Myo19 dimers processively moved on single actin filaments with a large step size of ∼34 nm. Importantly, WT Myo19 single molecules without the leucine zipper processively move in filopodia in living cells similar to Myo19 dimers, whereas deletion of the tail domain abolished such active movement. These results suggest that Myo19 can processively move on actin filaments when two Myo19 monomers form a dimer, presumably as a result of tail-tail association. In conclusion, Myo19 molecules can directly transport mitochondria on actin tracks within living cells.


Asunto(s)
Actinas , Miosinas , Citoesqueleto de Actina , Actinas/metabolismo , Mitocondrias , Dinámicas Mitocondriales , Miosinas/metabolismo , Seudópodos/metabolismo
6.
Cell ; 135(3): 535-48, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18984164

RESUMEN

Learning-related plasticity at excitatory synapses in the mammalian brain requires the trafficking of AMPA receptors and the growth of dendritic spines. However, the mechanisms that couple plasticity stimuli to the trafficking of postsynaptic cargo are poorly understood. Here we demonstrate that myosin Vb (MyoVb), a Ca2+-sensitive motor, conducts spine trafficking during long-term potentiation (LTP) of synaptic strength. Upon activation of NMDA receptors and corresponding Ca2+ influx, MyoVb associates with recycling endosomes (REs), triggering rapid spine recruitment of endosomes and local exocytosis in spines. Disruption of MyoVb or its interaction with the RE adaptor Rab11-FIP2 abolishes LTP-induced exocytosis from REs and prevents both AMPA receptor insertion and spine growth. Furthermore, induction of tight binding of MyoVb to actin using an acute chemical genetic strategy eradicates LTP in hippocampal slices. Thus, Ca2+-activated MyoVb captures and mobilizes REs for AMPA receptor insertion and spine growth, providing a mechanistic link between the induction and expression of postsynaptic plasticity.


Asunto(s)
Endosomas/metabolismo , Potenciación a Largo Plazo , Miosina Tipo V/metabolismo , Plasticidad Neuronal , Receptores AMPA/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Dendritas/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos , Miosina Tipo V/química , Neuronas/metabolismo , Ratas , Sinapsis/metabolismo , Proteínas de Unión al GTP rab/metabolismo
7.
Am J Respir Cell Mol Biol ; 66(2): 171-182, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34710342

RESUMEN

Mesothelial to mesenchymal transition (MesoMT) is one of the crucial mechanisms underlying pleural fibrosis, which results in restrictive lung disease. DOCK2 (dedicator of cytokinesis 2) plays important roles in immune functions; however, its role in pleural fibrosis, particularly MesoMT, remains unknown. We found that amounts of DOCK2 and the MesoMT marker α-SMA (α-smooth muscle actin) were significantly elevated and colocalized in the thickened pleura of patients with nonspecific pleuritis, suggesting the involvement of DOCK2 in the pathogenesis of MesoMT and pleural fibrosis. Likewise, data from three different pleural fibrosis models (TGF-ß [transforming growth factor-ß], carbon black/bleomycin, and streptococcal empyema) consistently demonstrated DOCK2 upregulation and its colocalization with α-SMA in the pleura. In addition, induced DOCK2 colocalized with the mesothelial marker calretinin, implicating DOCK2 in the regulation of MesoMT. Our in vivo data also showed that DOCK2-knockout mice were protected from Streptococcus pneumoniae-induced pleural fibrosis, impaired lung compliance, and collagen deposition. To determine the involvement of DOCK2 in MesoMT, we treated primary human pleural mesothelial cells with the potent MesoMT inducer TGF-ß. TGF-ß significantly induced DOCK2 expression in a time-dependent manner, together with α-SMA, collagen 1, and fibronectin. Furthermore, DOCK2 knockdown significantly attenuated TGF-ß-induced α-SMA, collagen 1, and fibronectin expression, suggesting the importance of DOCK2 in TGF-ß-induced MesoMT. DOCK2 knockdown also inhibited TGF-ß-induced Snail upregulation, which may account for its role in regulating MesoMT. Taken together, the current study provides evidence that DOCK2 contributes to the pathogenesis of pleural fibrosis by mediating MesoMT and deposition of neomatrix and may represent a novel target for its prevention or treatment.


Asunto(s)
Transición Epitelial-Mesenquimal , Epitelio/patología , Fibrosis/patología , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Pleura/patología , Pleuresia/patología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Antibióticos Antineoplásicos/toxicidad , Bleomicina/toxicidad , Modelos Animales de Enfermedad , Epitelio/metabolismo , Fibrosis/inducido químicamente , Fibrosis/metabolismo , Proteínas Activadoras de GTPasa/genética , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Pleura/metabolismo , Pleuresia/inducido químicamente , Pleuresia/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/genética
8.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L348-L364, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35018804

RESUMEN

Pleural mesothelial cells (PMCs) can become myofibroblasts via mesothelial-mesenchymal transition (MesoMT) and contribute to pleural organization, fibrosis, and rind formation. However, how these transformed mesothelial cells contribute to lung fibrosis remains unclear. Here, we investigated the mechanism of contractile myofibroblast differentiation of PMCs. Transforming growth factor-ß (TGF-ß) induced marked upregulation of calponin 1 expression, which was correlated with notable cytoskeletal rearrangement in human PMCs (HPMCs) to produce stress fibers. Downregulation of calponin 1 expression reduced stress fiber formation. Interestingly, induced stress fibers predominantly contain α-smooth muscle actin (αSMA) associated with calponin 1 but not ß-actin. Calponin 1-associated stress fibers also contained myosin II and α-actinin. Furthermore, focal adhesions were aligned with the produced stress fibers. These results suggest that calponin 1 facilitates formation of stress fibers that resemble contractile myofibrils. Supporting this notion, TGF-ß significantly increased the contractile activity of HPMCs, an effect that was abolished by downregulation of calponin 1 expression. We infer that differentiation of HPMCs to contractile myofibroblasts facilitates stiffness of scar tissue in pleura to promote pleural fibrosis (PF) and that upregulation of calponin 1 plays a central role in this process.


Asunto(s)
Miofibroblastos , Pleura , Proteínas de Unión al Calcio , Diferenciación Celular , Células Cultivadas , Fibrosis , Humanos , Proteínas de Microfilamentos , Miofibroblastos/metabolismo , Pleura/patología , Factor de Crecimiento Transformador beta/farmacología , Calponinas
9.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328736

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by an excess deposition of extracellular matrix in the pulmonary interstitium. Caveolin-1 scaffolding domain peptide (CSP) has been found to mitigate pulmonary fibrosis in several animal models. However, its pathophysiological role in IPF is obscure, and it remains critical to understand the mechanism by which CSP protects against pulmonary fibrosis. We first studied the delivery of CSP into cells and found that it is internalized and accumulated in the Endoplasmic Reticulum (ER). Furthermore, CSP reduced ER stress via suppression of inositol requiring enzyme1α (IRE1α) in transforming growth factor ß (TGFß)-treated human IPF lung fibroblasts (hIPF-Lfs). Moreover, we found that CSP enhanced the gelatinolytic activity of TGFß-treated hIPF-Lfs. The IRE1α inhibitor; 4µ8C also augmented the gelatinolytic activity of TGFß-treated hIPF-Lfs, supporting the concept that CSP induced inhibition of the IRE1α pathway. Furthermore, CSP significantly elevated expression of MMPs in TGFß-treated hIPF-Lfs, but conversely decreased the secretion of collagen 1. Similar results were observed in two preclinical murine models of PF, bleomycin (BLM)- and adenovirus expressing constitutively active TGFß (Ad-TGFß)-induced PF. Our findings provide new insights into the mechanism by which lung fibroblasts contribute to CSP dependent protection against lung fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Animales , Bleomicina , Caveolina 1/genética , Caveolina 1/metabolismo , Endorribonucleasas/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Ratones , Péptidos/metabolismo , Proteínas Serina-Treonina Quinasas , Factor de Crecimiento Transformador beta/metabolismo
10.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563212

RESUMEN

Pleural mesothelial cells (PMCs) play a central role in the progression of pleural fibrosis. As pleural injury progresses to fibrosis, PMCs transition to mesenchymal myofibroblast via mesothelial mesenchymal transition (MesoMT), and produce extracellular matrix (ECM) proteins including collagen and fibronectin (FN1). FN1 plays an important role in ECM maturation and facilitates ECM-myofibroblast interaction, thus facilitating fibrosis. However, the mechanism of FN1 secretion is poorly understood. We report here that myosin 5b (Myo5b) plays a critical role in the transportation and secretion of FN1 from human pleural mesothelial cells (HPMCs). TGF-ß significantly increased the expression and secretion of FN1 from HPMCs and facilitates the close association of Myo5B with FN1 and Rab11b. Moreover, Myo5b directly binds to GTP bound Rab11b (Rab11b-GTP) but not GDP bound Rab11b. Myo5b or Rab11b knockdown via siRNA significantly attenuated the secretion of FN1 without changing FN1 expression. TGF-ß also induced Rab11b-GTP formation, and Rab11b-GTP but not Rab11b-GDP significantly activated the actin-activated ATPase activity of Myo5B. Live cell imaging revealed that Myo5b- and FN1-containing vesicles continuously moved together in a single direction. These results support that Myo5b and Rab11b play an important role in FN1 transportation and secretion from HPMCs, and consequently may contribute to the development of pleural fibrosis.


Asunto(s)
Fibronectinas , Miosina Tipo V , Fibrosis , Guanosina Trifosfato , Humanos , Cadenas Pesadas de Miosina , Miosinas , Factor de Crecimiento Transformador beta/metabolismo
11.
Am J Respir Cell Mol Biol ; 64(4): 492-503, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33513310

RESUMEN

Pleural organization may occur after empyema or complicated parapneumonic effusion and can result in restrictive lung disease with pleural fibrosis (PF). Pleural mesothelial cells (PMCs) may contribute to PF through acquisition of a profibrotic phenotype, mesothelial-mesenchymal transition (MesoMT), which is characterized by increased expression of α-SMA (α-smooth muscle actin) and other myofibroblast markers. Although MesoMT has been implicated in the pathogenesis of PF, the role of the reactive oxygen species and the NOX (nicotinamide adenine dinucleotide phosphate oxidase) family in pleural remodeling remains unclear. Here, we show that NOX1 expression is enhanced in nonspecific human pleuritis and is induced in PMCs by THB (thrombin). 4-Hydroxy-2-nonenal, an indicator of reactive oxygen species damage, was likewise increased in our mouse model of pleural injury. NOX1 downregulation blocked THB- and Xa (factor Xa)-mediated MesoMT, as did pharmacologic inhibition of NOX1 with ML-171. NOX1 inhibition also reduced phosphorylation of Akt, p65, and tyrosine 216-GSK-3ß, signaling molecules previously shown to be implicated in MesoMT. Conversely, ML-171 did not reverse established MesoMT. NOX4 downregulation attenuated TGF-ß- and THB-mediated MesoMT. However, NOX1 downregulation did not affect NOX4 expression. NOX1- and NOX4-deficient mice were also protected in our mouse model of Streptococcus pneumoniae-mediated PF. These data show that NOX1 and NOX4 are critical determinants of MesoMT.


Asunto(s)
Transición Epitelial-Mesenquimal , NADPH Oxidasa 1/metabolismo , Pleura/enzimología , Pleuresia/enzimología , Neumonía Neumocócica/enzimología , Especies Reactivas de Oxígeno/metabolismo , Streptococcus pneumoniae/patogenicidad , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Factor Xa/metabolismo , Fibrosis , Interacciones Huésped-Patógeno , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 1/deficiencia , NADPH Oxidasa 1/genética , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Pleura/microbiología , Pleura/patología , Pleuresia/microbiología , Pleuresia/patología , Pleuresia/fisiopatología , Neumonía Neumocócica/microbiología , Neumonía Neumocócica/patología , Transducción de Señal , Trombina/metabolismo
12.
Proc Natl Acad Sci U S A ; 115(9): E1991-E2000, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29444861

RESUMEN

Electron microscope studies have shown that the switched-off state of myosin II in muscle involves intramolecular interaction between the two heads of myosin and between one head and the tail. The interaction, seen in both myosin filaments and isolated molecules, inhibits activity by blocking actin-binding and ATPase sites on myosin. This interacting-heads motif is highly conserved, occurring in invertebrates and vertebrates, in striated, smooth, and nonmuscle myosin IIs, and in myosins regulated by both Ca2+ binding and regulatory light-chain phosphorylation. Our goal was to determine how early this motif arose by studying the structure of inhibited myosin II molecules from primitive animals and from earlier, unicellular species that predate animals. Myosin II from Cnidaria (sea anemones, jellyfish), the most primitive animals with muscles, and Porifera (sponges), the most primitive of all animals (lacking muscle tissue) showed the same interacting-heads structure as myosins from higher animals, confirming the early origin of the motif. The social amoeba Dictyostelium discoideum showed a similar, but modified, version of the motif, while the amoeba Acanthamoeba castellanii and fission yeast (Schizosaccharomyces pombe) showed no head-head interaction, consistent with the different sequences and regulatory mechanisms of these myosins compared with animal myosin IIs. Our results suggest that head-head/head-tail interactions have been conserved, with slight modifications, as a mechanism for regulating myosin II activity from the emergence of the first animals and before. The early origins of these interactions highlight their importance in generating the inhibited (relaxed) state of myosin in muscle and nonmuscle cells.


Asunto(s)
Miosina Tipo II/antagonistas & inhibidores , Actinas/química , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Animales , Evolución Biológica , Calcio/química , Línea Celular , Biología Computacional , Microscopía por Crioelectrón , Dictyostelium , Procesamiento de Imagen Asistido por Computador , Insectos , Microscopía Electrónica , Miosina Tipo II/química , Fosforilación , Poríferos , Unión Proteica , Schizosaccharomyces , Escifozoos , Anémonas de Mar , Pavos
13.
J Cell Physiol ; 235(1): 114-127, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31347175

RESUMEN

Myosin phosphatase-Rho interacting protein (p116Rip ) was originally found as a RhoA-binding protein. Subsequent studies by us and others revealed that p116Rip facilitates myosin light chain phosphatase (MLCP) activity through direct and indirect manners. However, it is unclear how p116Rip regulates myosin phosphatase activity in cells. To elucidate the role of p116Rip in cellular contractile processes, we suppressed the expression of p116Rip by RNA interference in human airway smooth muscle cells (HASMCs). We found that knockdown of p116Rip in HASMCs led to increased di-phosphorylated MLC (pMLC), that is phosphorylation at both Ser19 and Thr18. This was because of a change in the interaction between MLCP and myosin, but not an alteration of RhoA/ROCK signaling. Attenuation of Zipper-interacting protein kinase (ZIPK) abolished the increase in di-pMLC, suggesting that ZIPK is involved in this process. Moreover, suppression of p116Rip expression in HASMCs substantially increased the histamine-induced collagen gel contraction. We also found that expression of the p116Rip was decreased in the airway smooth muscle tissue from asthmatic patients compared with that from non-asthmatic patients, suggesting a potential role of p116Rip expression in asthma pathogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Miocitos del Músculo Liso/fisiología , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Adolescente , Adulto , Colforsina/farmacología , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Histamina/farmacología , Humanos , Masculino , Persona de Mediana Edad , Miocitos del Músculo Liso/efectos de los fármacos , Fosfatasa de Miosina de Cadena Ligera/genética , Adulto Joven
14.
Am J Respir Cell Mol Biol ; 61(1): 86-96, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30605348

RESUMEN

Pleural fibrosis is characterized by severe inflammation of the pleural space and pleural reorganization. Subsequent thickening of the visceral pleura contributes to lung stiffness and impaired lung function. Pleural mesothelial cells (PMCs) can become myofibroblasts via mesothelial-mesenchymal transition (MesoMT) and contribute to pleural organization, fibrosis, and rind formation. However, the mechanisms that underlie MesoMT remain unclear. Here, we investigated the role of myocardin in the induction of MesoMT. Transforming growth factor ß (TGF-ß) and thrombin induced MesoMT and markedly upregulated the expression of myocardin, but not myocardin-related transcription factor A (MRTF-A) or MRTF-B, in human PMCs (HPMCs). TGF-ß stimulation notably induced the nuclear translocation of myocardin in HPMCs, whereas nuclear translocation of MRTF-A and MRTF-B was not observed. Several genes under the control of myocardin were upregulated in cells undergoing MesoMT, an effect that was accompanied by a dramatic cytoskeletal reorganization of HPMCs consistent with a migratory phenotype. Myocardin gene silencing blocked TGF-ß- and thrombin-induced MesoMT. Although myocardin upregulation was blocked, MRTF-A and MRTF-B were unchanged. Myocardin, α-SMA, calponin, and smooth muscle myosin were notably upregulated in the thickened pleura of carbon black/bleomycin and empyema mouse models of fibrosing pleural injury. Similar results were observed in human nonspecific pleuritis. In a TGF-ß mouse model of pleural fibrosis, PMC-specific knockout of myocardin protected against decrements in lung function. Further, TGF-ß-induced pleural thickening was abolished by PMC-specific myocardin knockout, which was accompanied by a marked reduction of myocardin, calponin, and α-SMA expression compared with floxed-myocardin controls. These novel results show that myocardin participates in the development of MesoMT in HPMCs and contributes to the pathogenesis of pleural organization and fibrosis.


Asunto(s)
Núcleo Celular/metabolismo , Empiema Pleural/metabolismo , Miofibroblastos/metabolismo , Proteínas Nucleares/metabolismo , Pleura/metabolismo , Transactivadores/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Adulto , Anciano , Anciano de 80 o más Años , Animales , Bleomicina/efectos adversos , Bleomicina/farmacología , Núcleo Celular/patología , Modelos Animales de Enfermedad , Empiema Pleural/inducido químicamente , Empiema Pleural/patología , Femenino , Fibrosis , Humanos , Masculino , Ratones , Persona de Mediana Edad , Miofibroblastos/patología , Pleura/patología , Hollín/toxicidad , Factor de Crecimiento Transformador beta/metabolismo
15.
J Cell Sci ; 130(15): 2468-2480, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28596242

RESUMEN

Smooth muscle is able to function over a much broader length range than striated muscle. The ability to maintain contractility after a large length change is thought to be due to an adaptive process involving restructuring of the contractile apparatus to maximize overlap between the contractile filaments. The molecular mechanism for the length-adaptive behavior is largely unknown. In smooth muscle adapted to different lengths we quantified myosin monomers, basal and activation-induced myosin light chain (MLC) phosphorylation, shortening velocity, power output and active force. The muscle was able to generate a constant maximal force over a two fold length range when it was allowed to go through isometric contraction/relaxation cycles after each length change (length adaptation). In the relaxed state, myosin monomer concentration and basal MLC phosphorylation decreased linearly, while in the activated state activation-induced MLC phosphorylation and shortening velocity/power output increased linearly with muscle length. The results suggest that recruitment of myosin monomers and oligomers into the actin filament lattice (where they form force-generating filaments) occurs during muscle adaptation to longer length, with the opposite occurring during adaptation to shorter length.


Asunto(s)
Contracción Muscular/fisiología , Músculo Liso/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Animales , Músculo Liso/citología , Fosforilación/fisiología , Ovinos
16.
Biophys J ; 114(6): 1400-1410, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29590597

RESUMEN

Myosin X is an unconventional actin-based molecular motor involved in filopodial formation, microtubule-actin filament interaction, and cell migration. Myosin X is an important component of filopodia regulation, localizing to tips of growing filopodia by an unclear targeting mechanism. The native α-helical dimerization domain of myosin X is thought to associate with antiparallel polarity of the two amino acid chains, making myosin X the only myosin that is currently considered to form antiparallel dimers. This study aims to determine if antiparallel dimerization of myosin X imparts selectivity toward actin bundles by comparing the motility of parallel and antiparallel dimers of myosin X on single and fascin-bundled actin filaments. Antiparallel myosin X dimers exhibit selective processivity on fascin-bundled actin and are only weakly processive on single actin filaments below saturating [ATP]. Artificial forced parallel dimers of myosin X are robustly processive on both single and bundled actin, exhibiting no selectivity. To determine the relationship between gating of the reaction steps and observed differences in motility, a mathematical model was developed to correlate the parameters of motility with the biochemical and mechanical kinetics of the dimer. Results from the model, constrained by experimental data, suggest that the probability of binding forward, toward the barbed end of the actin filament, is lower in antiparallel myosin X on single actin filaments compared to fascin-actin bundles and compared to constructs of myosin X with parallel dimerization.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Miosinas/química , Miosinas/metabolismo , Multimerización de Proteína , Animales , Bovinos , Cinética , Modelos Moleculares , Método de Montecarlo , Unión Proteica , Estructura Cuaternaria de Proteína
17.
J Biol Chem ; 292(26): 10950-10960, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28507101

RESUMEN

Human myosin VIIa (MYO7A) is an actin-linked motor protein associated with human Usher syndrome (USH) type 1B, which causes human congenital hearing and visual loss. Although it has been thought that the role of human myosin VIIa is critical for USH1 protein tethering with actin and transportation along actin bundles in inner-ear hair cells, myosin VIIa's motor function remains unclear. Here, we studied the motor function of the tail-truncated human myosin VIIa dimer (HM7AΔTail/LZ) at the single-molecule level. We found that the HM7AΔTail/LZ moves processively on single actin filaments with a step size of 35 nm. Dwell-time distribution analysis indicated an average waiting time of 3.4 s, yielding ∼0.3 s-1 for the mechanical turnover rate; hence, the velocity of HM7AΔTail/LZ was extremely slow, at 11 nm·s-1 We also examined HM7AΔTail/LZ movement on various actin structures in demembranated cells. HM7AΔTail/LZ showed unidirectional movement on actin structures at cell edges, such as lamellipodia and filopodia. However, HM7AΔTail/LZ frequently missed steps on actin tracks and exhibited bidirectional movement at stress fibers, which was not observed with tail-truncated myosin Va. These results suggest that the movement of the human myosin VIIa motor protein is more efficient on lamellipodial and filopodial actin tracks than on stress fibers, which are composed of actin filaments with different polarity, and that the actin structures influence the characteristics of cargo transportation by human myosin VIIa. In conclusion, myosin VIIa movement appears to be suitable for translocating USH1 proteins on stereocilia actin bundles in inner-ear hair cells.


Asunto(s)
Actinas/metabolismo , Miosinas/metabolismo , Seudópodos/metabolismo , Síndromes de Usher/metabolismo , Células 3T3 , Actinas/genética , Secuencia de Aminoácidos , Animales , Humanos , Ratones , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Miosina VIIa , Miosinas/genética , Transporte de Proteínas/genética , Seudópodos/genética , Eliminación de Secuencia , Síndromes de Usher/genética
18.
J Cell Physiol ; 233(1): 434-446, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28295256

RESUMEN

Intercellular communication among autonomic nerves, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs) plays a central role in an uninterrupted regulation of blood flow through vascular contractile machinery. Impairment of this communication is linked to development of vascular diseases such as hypertension, cerebral/coronary vasospasms, aortic aneurism, and erectile dysfunction. Although the basic concept of the communication as a whole has been studied, the spatiotemporal correlation of ECs/VSMCs in tissues at the cellular level is unknown. Here, we show a unique VSMC response to ECs during contraction and relaxation of isolated aorta tissues through visualization of spatiotemporal activation patterns of smooth muscle myosin II. ECs in the intimal layer dictate the stimulus-specific heterogeneous activation pattern of myosin II in VSMCs within distinct medial layers. Myosin light chain (MLC) phosphorylation (active form of myosin II) gradually increases towards outer layers (approximately threefold higher MLC phosphorylation at the outermost layer than that of the innermost layer), presumably by release of an intercellular messenger, nitric oxide (NO). Our study also demonstrates that the MLC phosphorylation at the outermost layer in spontaneously hypertensive rats (SHR) during NO-induced relaxation is quite high and approximately 10-fold higher than that of its counterpart, the Wister-Kyoto rats (WKY), suggesting that the distinct pattern of myosin II activation within tissues is important for vascular protection against elevated blood pressure.


Asunto(s)
Células Endoteliales/fisiología , Técnica del Anticuerpo Fluorescente , Microscopía Fluorescente , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/fisiología , Vasoconstricción , Animales , Aorta Torácica/metabolismo , Aorta Torácica/fisiología , Biomarcadores , Comunicación Celular , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Hipertensión/metabolismo , Hipertensión/fisiopatología , Técnicas In Vitro , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Miosina Tipo II/metabolismo , Óxido Nítrico/metabolismo , Fosforilación , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Factores de Tiempo , Vasodilatación
19.
Am J Physiol Lung Cell Mol Physiol ; 314(5): L757-L768, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29345198

RESUMEN

Recent studies have shed new light on the role of the fibrinolytic system in the pathogenesis of pleural organization, including the mechanisms by which the system regulates mesenchymal transition of mesothelial cells and how that process affects outcomes of pleural injury. The key contribution of plasminogen activator inhibitor-1 to the outcomes of pleural injury is now better understood as is its role in the regulation of intrapleural fibrinolytic therapy. In addition, the mechanisms by which fibrinolysins are processed after intrapleural administration have now been elucidated, informing new candidate diagnostics and therapeutics for pleural loculation and failed drainage. The emergence of new potential interventional targets offers the potential for the development of new and more effective therapeutic candidates.


Asunto(s)
Fibrina/metabolismo , Enfermedades Pleurales/fisiopatología , Animales , Humanos , Enfermedades Pleurales/metabolismo
20.
PLoS Pathog ; 12(10): e1005972, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27783671

RESUMEN

In this study, we developed a mouse model of type 2 diabetes mellitus (T2DM) using streptozotocin and nicotinamide and identified factors that increase susceptibility of T2DM mice to infection by Mycobacterium tuberculosis (Mtb). All Mtb-infected T2DM mice and 40% of uninfected T2DM mice died within 10 months, whereas all control mice survived. In Mtb-infected mice, T2DM increased the bacterial burden and pro- and anti-inflammatory cytokine and chemokine production in the lungs relative to those in uninfected T2DM mice and infected control mice. Levels of IL-6 also increased. Anti-IL-6 monoclonal antibody treatment of Mtb-infected acute- and chronic-T2DM mice increased survival (to 100%) and reduced pro- and anti-inflammatory cytokine expression. CD11c+ cells were the major source of IL-6 in Mtb-infected T2DM mice. Pulmonary natural killer (NK) cells in Mtb-infected T2DM mice further increased IL-6 production by autologous CD11c+ cells through their activating receptors. Anti-NK1.1 antibody treatment of Mtb-infected acute-T2DM mice increased survival and reduced pro- and anti-inflammatory cytokine expression. Furthermore, IL-6 increased inflammatory cytokine production by T lymphocytes in pulmonary tuberculosis patients with T2DM. Overall, the results suggest that NK-CD11c+ cell interactions increase IL-6 production, which in turn drives the pathological immune response and mortality associated with Mtb infection in diabetic mice.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/inmunología , Células Asesinas Naturales/inmunología , Tuberculosis/complicaciones , Tuberculosis/inmunología , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunohistoquímica , Inflamación/inmunología , Interleucina-6/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Mycobacterium tuberculosis , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Cross-Talk/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA