Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 10(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36829619

RESUMEN

Agriculture is the backbone of any country, and plays a viable role in the total gross domestic product (GDP). Healthy and fruitful crops are of immense importance for a government to fulfill the food requirements of its inhabitants. Because of land diversities, weather conditions, geographical locations, defensive measures against diseases, and natural disasters, monitoring crops with human intervention becomes quite challenging. Conventional crop classification and yield estimation methods are ineffective under unfavorable circumstances. This research exploits modern precision agriculture tools for enhanced remote crop yield estimation, and types classification by proposing a fuzzy hybrid ensembled classification and estimation method using remote sensory data. The architecture enhances the pooled images with fuzzy neighborhood spatial filtering, scaling, flipping, shearing, and zooming. The study identifies the optimal weights of the strongest candidate classifiers for the ensembled classification method adopting the bagging strategy. We augmented the imagery datasets to achieve an unbiased classification between different crop types, including jute, maize, rice, sugarcane, and wheat. Further, we considered flaxseed, lentils, rice, sugarcane, and wheat for yield estimation on publicly available datasets provided by the Food and Agriculture Organization (FAO) of the United Nations and the Word Bank DataBank. The ensemble method outperformed the individual classification methods for crop type classification on an average of 13% and 24% compared to the highest gradient boosting and lowest decision tree methods, respectively. Similarly, we observed that the gradient boosting predictor outperformed the multivariate regressor, random forest, and decision tree regressor, with a comparatively lower mean square error value on yield years 2017 to 2021. Further, the proposed architecture supports embedded devices, where remote devices can adopt a lightweight classification algorithm, such as MobilenetV2. This can significantly reduce the processing time and overhead of a large set of pooled images.

2.
Cancers (Basel) ; 15(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37509267

RESUMEN

Skin cancer is a major public health concern around the world. Skin cancer identification is critical for effective treatment and improved results. Deep learning models have shown considerable promise in assisting dermatologists in skin cancer diagnosis. This study proposes SBXception: a shallower and broader variant of the Xception network. It uses Xception as the base model for skin cancer classification and increases its performance by reducing the depth and expanding the breadth of the architecture. We used the HAM10000 dataset, which contains 10,015 dermatoscopic images of skin lesions classified into seven categories, for training and testing the proposed model. Using the HAM10000 dataset, we fine-tuned the new model and reached an accuracy of 96.97% on a holdout test set. SBXception also achieved significant performance enhancement with 54.27% fewer training parameters and reduced training time compared to the base model. Our findings show that reducing and expanding the Xception model architecture can greatly improve its performance in skin cancer categorization.

3.
Diagnostics (Basel) ; 13(10)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37238222

RESUMEN

Glaucoma is characterized by increased intraocular pressure and damage to the optic nerve, which may result in irreversible blindness. The drastic effects of this disease can be avoided if it is detected at an early stage. However, the condition is frequently detected at an advanced stage in the elderly population. Therefore, early-stage detection may save patients from irreversible vision loss. The manual assessment of glaucoma by ophthalmologists includes various skill-oriented, costly, and time-consuming methods. Several techniques are in experimental stages to detect early-stage glaucoma, but a definite diagnostic technique remains elusive. We present an automatic method based on deep learning that can detect early-stage glaucoma with very high accuracy. The detection technique involves the identification of patterns from the retinal images that are often overlooked by clinicians. The proposed approach uses the gray channels of fundus images and applies the data augmentation technique to create a large dataset of versatile fundus images to train the convolutional neural network model. Using the ResNet-50 architecture, the proposed approach achieved excellent results for detecting glaucoma on the G1020, RIM-ONE, ORIGA, and DRISHTI-GS datasets. We obtained a detection accuracy of 98.48%, a sensitivity of 99.30%, a specificity of 96.52%, an AUC of 97%, and an F1-score of 98% by using the proposed model on the G1020 dataset. The proposed model may help clinicians to diagnose early-stage glaucoma with very high accuracy for timely interventions.

4.
Front Public Health ; 10: 884645, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712272

RESUMEN

Climate change is unexpected weather patterns that can create an alarming situation. Due to climate change, various sectors are affected, and one of the sectors is healthcare. As a result of climate change, the geographic range of several vector-borne human infectious diseases will expand. Currently, dengue is taking its toll, and climate change is one of the key reasons contributing to the intensification of dengue disease transmission. The most important climatic factors linked to dengue transmission are temperature, rainfall, and relative humidity. The present study carries out a systematic literature review on the surveillance system to predict dengue outbreaks based on Machine Learning modeling techniques. The systematic literature review discusses the methodology and objectives, the number of studies carried out in different regions and periods, the association between climatic factors and the increase in positive dengue cases. This study also includes a detailed investigation of meteorological data, the dengue positive patient data, and the pre-processing techniques used for data cleaning. Furthermore, correlation techniques in several studies to determine the relationship between dengue incidence and meteorological parameters and machine learning models for predictive analysis are discussed. In the future direction for creating a dengue surveillance system, several research challenges and limitations of current work are discussed.


Asunto(s)
Cambio Climático , Dengue , Dengue/epidemiología , Humanos , Incidencia , Estudios Retrospectivos , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA