Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 91(16): 10564-10572, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31357863

RESUMEN

Single cell metabolome analysis is essential for studying microscale life phenomena such as neuronal networks and tumor microenvironments. Capillary electrophoresis-mass spectrometry (CE-MS) is one of the most sensitive technologies; however, its sensitivity is still not enough for single cell analysis on general human cells such as HeLa. To address these issues, we first developed an efficient ionization emitter, named as a "nanoCESI" emitter, that had a thin-walled (∼10 µm) and tapered (5-10 µm) end. The thin conductive wall enabled sheathless ionization and minimized the flow rate of ionizing sample, and the tapered end efficiently ionized analytes via an electrospray ionization mechanism, providing up to 3.5-fold increase in sensitivity compared with a conventional sheathless emitter. Fifty repetitive analyses on 20 amino acids were successfully achieved with a nanoCESI emitter. Relative standard deviations of 50 analyses were 1.5%, 4.4%, and 6.8% for migration time, peak height, and peak area, respectively, where a limit of detection (LOD) of 170 pM (850 zmol) was achieved. Second, a sample enrichment method, large-volume dual preconcentration by isotachophoresis and stacking (LDIS), was applied to a newly designed protocol of nanoCESI-MS. This approach achieved up to 380-fold enhanced sensitivity and LOD of 450 fM. Compared with normal sheathless CE-MS, coupling of nanoCESI and LDIS provided up to 800-fold increase of sensitivity in total. Finally, metabolome analyses of single HeLa cells were performed, where 20 amino acids were successfully quantified with triple-quadrupole MS and 40 metabolites were identified with quadrupole-time-of-flight MS, as a promising analytical platform for microscale bioanalysis for the next generation.


Asunto(s)
Aminoácidos/análisis , Metabolómica , Análisis de la Célula Individual , Aminoácidos/metabolismo , Electroforesis Capilar , Células HeLa , Humanos , Espectrometría de Masas
2.
J Chromatogr A ; 1565: 138-144, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-29945790

RESUMEN

Glycan structure is changed in response with pathogenesis like cancer. Profiling of glycans from limited number of pathogenetic cells in an early-stage tissue is essential for discovering effective drugs. For analyzing tiny biological samples, we developed sensitive, high-resolution, and salt-tolerant method for analyzing trace level of N-linked glycans by coupling capillary electrophoresis (CE), laser-induced fluorescence (LIF) detection, and a new online sample preconcentration (OSP) method named "large-volume dual preconcentration by isotachophoresis and stacking (LDIS)", which is composed of two OSP methods, large-volume sample stacking (LVSS) and transient isotachophoresis (tITP). A typical LDIS-CE-LIF protocol was simple: a short-plug of leading electrolyte (LE) and large-volume sample solution were introduced to a capillary, followed by application of constant voltage. In the analysis of glucose ladder labeled with 8-aminopyrene-1,3,6-trisulfonic acid with 10 mM sodium chloride as LE, up to 2300-fold sensitivity increase was achieved with higher resolution than those in normal CE. By applying pressure assist during preconcentration, both viscous gel electrolyte and salty matrix of up to 10 mM NaCl were acceptable. Finally, N-glycans from approximately 100 cells (HeLa, MCF7, and HepG2) were analyzed as the model of localized tumor cells. From 30 to 40 glycans were successfully detected with almost same profile of large-scale sample. N-glycan structure could be predicted by searching glucose-unit value via Glycobase database, indicating that HepG2 expressed more sialylated glycans and MCF-7 expressed less glycans respectively, comparing with HeLa cells. It suggests the potential of LDIS-CE-LIF for discovery of disease-specific N-linked glycans in microscale environment.


Asunto(s)
Electroforesis Capilar/métodos , Isotacoforesis/métodos , Polisacáridos/metabolismo , Línea Celular Tumoral , Electricidad , Electrólitos/química , Humanos , Polisacáridos/química , Sales (Química)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA