Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Comp Immunol Microbiol Infect Dis ; 100: 102036, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37541170

RESUMEN

Feral birds residing close to urban settings exhibit higher immunocompetence against environmental pathogens than their counterparts in rural areas. In this study, we comprehensively evaluated the immunocompetence of five specific feral bird species and investigated the potential for interspecies transmission and pathogenicity of Avian orthoavulavirus-1 (AOAV-1) originating from the Anseriformes order. The immunocompetence assessment involved administering the phytohemagglutinin (PHA) test to individual groups of birds from rural and urban settings, measuring patagium thickness at specific time intervals (12, 24, 36, 48, and 60 h) following the administration of 0.1 mL (1 mg/mL) of PHA. Urban birds displayed significantly enhanced mean swelling responses, particularly urban pigeons, which exhibited a significant difference in patagium thickness at all-time intervals except for 24 h (p = 0.000, p = 0.12). Similarly, rural and urban quails and crows showed substantial differences in patagium thickness at all-time intervals except for 12 h (p = 0.542, p = 0.29). For the assessment of interspecies transmission potential and pathogenicity, each feral bird group was separately housed with naive broiler birds (n = 10 each) and challenged with a velogenic strain of AOAV-1 isolate (Mallard-II/UVAS/Pak/2016) at a dose of 1 mL (108 EID50/mL). Urban birds demonstrated higher resistance to the virus compared to their rural counterparts. These findings highlight the specific immunocompetence of feral bird species and their potential contributions to AOAV-1 transmission and pathogenicity. Continuous monitoring, surveillance, and strict implementation of biosafety and biosecurity measures are crucial for effectively controlling AOAV-1 spillover to the environment and wild bird populations in resource-limited settings, particularly Pakistan.


Asunto(s)
Animales Salvajes , Pollos , Animales , Virus de la Enfermedad de Newcastle/fisiología , Patos , Inmunocompetencia
2.
Acta Trop ; 205: 105435, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32142734

RESUMEN

An extended range of host susceptibility including camel has been evidenced for some of the important veterinary and public health pathogens, such as brucellosis, peste des petits ruminants (PPR) and bluetongue (BT). However, in disease endemic settings across many parts of the globe, most of the disease control interventions accounts for small and large ruminants, whereas unusual hosts and/or natural reservoirs, such as camels, remain neglected for disease control measures including routine vaccination. Such a policy drawback not only plays an important role in disease epizootiology particularly in settings where disease is endemic, but also serves an obstacle in disease control and subsequent eradication in future. With this background, using pre-validated ELISA and molecular assays [multiplex PCR, reverse transcriptase (RT)-PCR and real-time (rt)-PCR], we conducted a large-scale pathogen- and antibody-based surveillance for brucellosis, peste des petits ruminants and bluetongue in camel population (n = 992) originating from a wide geographical region in southern part of the Punjab province, Pakistan. Varying in each of the selected districts, the seroprevalence was found to be maximum for bluetongue [n = 697 (70.26%, 95% CI: 67.29-73.07)], followed by PPR [n = 193 (19.46%, 95% CI: 17.07-22.09)] and brucellosis [n = 66 (6.65%, 95% CI: 5.22-8.43)]. Odds of seroprevalence were more significantly associated with pregnancy status (non-pregnant, OR = 2.23, 95% CI: 1.86-5.63, p<0.01), farming system (mixed-animal, OR = 2.59, 95% CI: 1.56-4.29, p<0.01), breed (Desi, OR = 1.97, 95% CI: 1.28-4.03, p<0.01) and farmer education (illiterate, OR = 3.17, 95% CI: 1.45-6.93, p<0.01) for BTV, body condition (normal, OR = 3.54, 95% CI: 1.92-6.54, p<0.01) and breed (Desi, OR = 2.19, 95% CI: 1.09-4.40, p<0.01) for brucellosis, and feeding system for PPR (grazing, OR = 2.75, 95% CI: 1.79-4.22, p<0.01). Among the total herds included (n = 74), genome corresponding to BT virus (BTV) and brucellosis was detected in 14 (18.92%, 95 CI: 11.09-30.04) and 19 herds (25.68%, 95% CI: 16.54-37.38), respectively. None of the herds was detected with genome of PPR virus (PPRV). Among the positive herds, serotype 1, 8 and 11 were detected for BTV while all the herds were exclusively positive to B. abortus. Taken together, the study highlights the role of potential disease reservoirs in the persistence and transmission of selected diseases in their susceptible hosts and, therefore, urges necessary interventions (e.g., inclusion of camels for vaccine etc.) for the control of diseases from their endemic setting worldwide.


Asunto(s)
Lengua Azul/epidemiología , Brucelosis/veterinaria , Camelus/microbiología , Peste de los Pequeños Rumiantes/epidemiología , Animales , Brucelosis/epidemiología , Brucelosis/microbiología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Femenino , Pakistán/epidemiología , Embarazo , Salud Pública , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Riesgo , Estudios Seroepidemiológicos , Serogrupo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA