Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 386(1): 26-34, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37068911

RESUMEN

Vericiguat and its metabolite M-1 were assessed for proarrhythmic risk in nonclinical in vitro and in vivo studies. In vitro manual voltage-clamp recordings at room temperature determined the effect of vericiguat on human Ether-a-go-go Related Gene (hERG) K+ channels. Effects of vericiguat and M-1 on hERG K+, Nav1.5, hCav1.2, hKvLQT1/1minK, and hKv4.3 channels were investigated via automated voltage-clamp recordings at ambient temperature. Effects of vericiguat and M-1 on hERG K+ and Nav1.5 channels at pathophysiological conditions were explored via manual voltage-clamp recordings at physiologic temperature. Single oral doses of vericiguat (0.6, 2.0, and 6.0 mg/kg) were assessed for in vivo proarrhythmic risk via administration to conscious telemetered dogs; electrocardiogram (ECG) and hemodynamic parameters were monitored. ECG recordings were included in 4- and 39-week dog toxicity studies. In manual voltage-clamp recordings, vericiguat inhibited hERG K+-mediated tail currents in a concentration-dependent manner (20% threshold inhibitory concentration ∼1.9 µM). In automated voltage-clamp recordings, neither vericiguat nor M-1 were associated with biologically relevant inhibition (>20%) of hNav1.5, hCav1.2, hKvLQT1, and hKv4.3. No clinically relevant observations were made for hNav1.5 and hKvLQT1 under simulated pathophysiological conditions. Vericiguat was associated with expected mode-of-action-related dose-dependent changes in systolic arterial blood pressure (up to -20%) and heart rate (up to +53%). At maximum vericiguat dose, corrected QT (QTc) interval changes from baseline varied slightly (-6 to +1%) depending on correction formula. Toxicity studies confirmed absence of significant QTc interval changes. There was no evidence of an increased proarrhythmic risk from nonclinical studies with vericiguat or M-1. SIGNIFICANCE STATEMENT: There was no evidence of an increased proarrhythmic risk from in vitro and in vivo nonclinical studies with vericiguat or M-1. The integrated risk assessment of these nonclinical data combined with existing clinical data demonstrate administration of vericiguat 10 mg once daily in patients with heart failure with reduced ejection fraction is not associated with a proarrhythmic risk.


Asunto(s)
Insuficiencia Cardíaca , Compuestos Heterocíclicos con 2 Anillos , Humanos , Animales , Perros , Guanilil Ciclasa Soluble/metabolismo , Pirimidinas , Vasodilatadores , Canales de Potasio Éter-A-Go-Go
2.
Toxicol Appl Pharmacol ; 390: 114883, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31981640

RESUMEN

Human-based in silico models are emerging as important tools to study the effects of integrating inward and outward ion channel currents to predict clinical proarrhythmic risk. The aims of this study were 2-fold: 1) Evaluate the capacity of an in silico model to predict QTc interval prolongation in the in vivo anesthetized cardiovascular guinea pig (CVGP) assay for new chemical entities (NCEs) and; 2) Determine if a translational pharmacokinetic/pharmacodynamic (tPKPD) model can improve the predictive capacity. In silico simulations for NCEs were performed using a population of human ventricular action potential (AP) models. PatchXpress® (PX) or high throughput screening (HTS) ion channel data from respectively n = 73 and n = 51 NCEs were used as inputs for the in silico population. These NCEs were also tested in the CVGP (n = 73). An M5 pruned decision tree-based regression tPKPD model was used to evaluate the concentration at which an NCE is liable to prolong the QTc interval in the CVGP. In silico results successfully predicted the QTc interval prolongation outcome observed in the CVGP with an accuracy/specificity of 85%/73% and 75%/77%, when using PX and HTS ion channel data, respectively. Considering the tPKPD predicted concentration resulting in QTc prolongation (EC5%) increased accuracy/specificity to 97%/95% using PX and 88%/97% when using HTS. Our results support that human-based in silico simulations in combination with tPKPD modeling can provide correlative results with a commonly used early in vivo safety assay, suggesting a path toward more rapid NCE assessment with reduced resources, cycle time, and animal use.


Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas , Simulación por Computador , Técnicas Electrofisiológicas Cardíacas , Modelos Biológicos , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Línea Celular , Fenómenos Electrofisiológicos/efectos de los fármacos , Cobayas , Células HEK293 , Humanos , Potenciales de la Membrana/efectos de los fármacos , Modelos Químicos
3.
Toxicol Appl Pharmacol ; 394: 114961, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32209365

RESUMEN

INTRODUCTION: hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed. METHODS: A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates. RESULTS: A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used. DISCUSSION: This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment.


Asunto(s)
Canal de Potasio ERG1/antagonistas & inhibidores , Medición de Riesgo/métodos , Torsades de Pointes/inducido químicamente , Teorema de Bayes , Simulación por Computador , Humanos , Modelos Biológicos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Seguridad , Torsades de Pointes/fisiopatología
4.
Chem Res Toxicol ; 32(8): 1528-1544, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31271030

RESUMEN

Human hepatocellular carcinoma cells, HepG2, are often used for drug mediated mitochondrial toxicity assessments. Glucose in HepG2 culture media is replaced by galactose to reveal drug-induced mitochondrial toxicity as a marked shift of drug IC50 values for the reduction of cellular ATP. It has been postulated that galactose sensitizes HepG2 mitochondria by the additional ATP consumption demand in the Leloir pathway. However, our NMR metabolomics analysis of HepG2 cells and culture media showed very limited galactose metabolism. To clarify the role of galactose in HepG2 cellular metabolism, U-13C6-galactose or U-13C6-glucose was added to HepG2 culture media to help specifically track the metabolism of those two sugars. Conversion to U-13C3-lactate was hardly detected when HepG2 cells were incubated with U-13C6-galactose, while an abundance of U-13C3-lactate was produced when HepG2 cells were incubated with U-13C6-glucose. In the absence of glucose, HepG2 cells increased glutamine consumption as a bioenergetics source. The requirement of additional glutamine almost matched the amount of glucose needed to maintain a similar level of cellular ATP in HepG2 cells. This improved understanding of galactose and glutamine metabolism in HepG2 cells helped optimize the ATP-based mitochondrial toxicity assay. The modified assay showed 96% sensitivity and 97% specificity in correctly discriminating compounds known to cause mitochondrial toxicity from those with prior evidence of not being mitochondrial toxicants. The greatest significance of the modified assay was its improved sensitivity in detecting the inhibition of mitochondrial fatty acid ß-oxidation (FAO) when glutamine was withheld. Use of this improved assay for an empirical prediction of the likely contribution of mitochondrial toxicity to human DILI (drug induced liver injury) was attempted. According to testing of 65 DILI positive compounds representing numerous mechanisms of DILI together with 55 DILI negative compounds, the overall prediction of mitochondrial mechanism-related DILI showed 25% sensitivity and 95% specificity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Galactosa/metabolismo , Glucosa/metabolismo , Mitocondrias Hepáticas/metabolismo , Amiodarona/farmacología , Benzbromarona/farmacología , Células Hep G2 , Humanos , Metabolómica , Mitocondrias Hepáticas/efectos de los fármacos , Piperazinas/farmacología , Triazoles/farmacología , Troglitazona/farmacología , Células Tumorales Cultivadas
5.
Toxicol Appl Pharmacol ; 308: 66-76, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27520758

RESUMEN

Several clinical cases of severe bradyarrhythmias have been reported upon co-administration of the Hepatitis-C NS5B Nucleotide Polymerase Inhibitor (HCV-NI) direct-acting antiviral agent, sofosbuvir (SOF), and the Class-III anti-arrhythmic amiodarone (AMIO). We model the cardiac drug-drug interaction (DDI) between AMIO and SOF, and between AMIO and a closely-related SOF analog, MNI-1 (Merck Nucleotide Inhibitor #1), in functional assays of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), to provide mechanistic insights into recently reported clinical cases. AMIO co-applied with SOF or MNI-1 increased beating rate or field potential (FP) rate and decreased impedance (IMP) and Ca(2+) transient amplitudes in hiPSC-CM syncytia. This action resembled that of Ca(2+) channel blockers (CCBs) in the model, but CCBs did not substitute for AMIO in the DDI. AMIO analog dronedarone (DRON) did not substitute for, but competed with AMIO in the DDI. Ryanodine and thapsigargin, decreasing intracellular Ca(2+) stores, and SEA-0400, a Na(+)/Ca(2+) exchanger-1 (NCX1) inhibitor, partially antagonized or suppressed DDI effects. Other agents affecting FP rate only exerted additive or subtractive effects, commensurate with their individual effects. We also describe an interaction between AMIO and MNI-1 on Cav1.2 ion channels in an over-expressing HEK-293 cell line. MNI-1 enhanced Cav1.2 channel inhibition by AMIO, but did not affect inhibition of Cav1.2 by DRON, verapamil, nifedipine, or diltiazem. Our data in hiPSC-CMs indicate that HCV-NI agents such as SOF and MNI-1 interact with key intracellular Ca(2+)-handling mechanisms. Additional study in a Cav1.2 HEK-293 cell-line suggests that HCV-NIs potentiate the inhibitory action of AMIO on L-type Ca(2+) channels.


Asunto(s)
Amiodarona/farmacología , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Canales de Calcio Tipo L , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología
7.
J Pharmacol Toxicol Methods ; 123: 107281, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37390871

RESUMEN

Human induced Pluripotent Stem Cell (hiPSC) derived neural cells offer great potential for modelling neurological diseases and toxicities and have found application in drug discovery and toxicology. As part of the European Innovative Medicines Initiative (IMI2) NeuroDeRisk (Neurotoxicity De-Risking in Preclinical Drug Discovery), we here explore the Ca2+ oscillation responses of 2D and 3D hiPSC derived neuronal networks of mixed Glutamatergic/GABAergic activity with a compound set encompassing both clinically as well as experimentally determined seizurogenic compounds. Both types of networks are scored against Ca2+ responses of a primary mouse cortical neuronal 2D network model serving as an established comparator assay. Parameters of frequency and amplitude of spontaneous global network Ca2+ oscillations and the drug-dependent directional changes to these were assessed, and predictivity of seizurogenicity scored using contingency table analysis. In addition, responses between models were compared between both 2D models as well as between 2D and 3D models. Concordance of parameter responses was best between the hiPSC neurospheroid and the mouse primary cortical neuron model (77% for frequency and 65% for amplitude). Decreases in spontaneous Ca2+ oscillation frequency and amplitude were found to be the most basic shared determinants of risk of seizurogenicity between the mouse and the neurospheroid model based on testing of clinical compounds with documented seizurogenic activity. Increases in spontaneous Ca2+ oscillation frequency were primarily observed with the 2D hIPSC model, though the specificity of this effect to seizurogenic clinical compounds was low (33%), while decreases to spike amplitude in this model were more predictive of seizurogenicity. Overall predictivities of the models were similar, with sensitivity of the assays typically exceeding specificity due to high false positive rates. Higher concordance of the hiPSC 3D model over the 2D model when compared to mouse cortical 2D responses may be the result of both a longer maturation time of the neurospheroid (84-87 days for 3D vs. 22-24 days for 2D maturation) as well as the 3-dimensional nature of network connections established. The simplicity and reproducibility of spontaneous Ca2+ oscillation readouts support further investigation of hiPSC derived neuronal sources and their 2- and 3-dimensional networks for neuropharmacological safety screening.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Células Cultivadas , Reproducibilidad de los Resultados , Neuronas , Descubrimiento de Drogas , Diferenciación Celular
8.
APL Bioeng ; 7(4): 046113, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38046544

RESUMEN

There is critical need for a predictive model of human cardiac physiology in drug development to assess compound effects on human tissues. In vitro two-dimensional monolayer cultures of cardiomyocytes provide biochemical and cellular readouts, and in vivo animal models provide information on systemic cardiovascular response. However, there remains a significant gap in these models due to their incomplete recapitulation of adult human cardiovascular physiology. Recent efforts in developing in vitro models from engineered heart tissues have demonstrated potential for bridging this gap using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in three-dimensional tissue structure. Here, we advance this paradigm by implementing FRESH™ 3D bioprinting to build human cardiac tissues in a medium throughput, well-plate format with controlled tissue architecture, tailored cellular composition, and native-like physiological function, specifically in its drug response. We combined hiPSC-CMs, endothelial cells, and fibroblasts in a cellular bioink and FRESH™ 3D bioprinted this mixture in the format of a thin tissue strip stabilized on a tissue fixture. We show that cardiac tissues could be fabricated directly in a 24-well plate format were composed of dense and highly aligned hiPSC-CMs at >600 million cells/mL and, within 14 days, demonstrated reproducible calcium transients and a fast conduction velocity of ∼16 cm/s. Interrogation of these cardiac tissues with the ß-adrenergic receptor agonist isoproterenol showed responses consistent with positive chronotropy and inotropy. Treatment with calcium channel blocker verapamil demonstrated responses expected of hiPSC-CM derived cardiac tissues. These results confirm that FRESH™ 3D bioprinted cardiac tissues represent an in vitro platform that provides data on human physiological response.

10.
Sci Rep ; 10(1): 5627, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221320

RESUMEN

Automated patch clamp (APC) instruments enable efficient evaluation of electrophysiologic effects of drugs on human cardiac currents in heterologous expression systems. Differences in experimental protocols, instruments, and dissimilar site procedures affect the variability of IC50 values characterizing drug block potency. This impacts the utility of APC platforms for assessing a drug's cardiac safety margin. We determined variability of APC data from multiple sites that measured blocking potency of 12 blinded drugs (with different levels of proarrhythmic risk) against four human cardiac currents (hERG [IKr], hCav1.2 [L-Type ICa], peak hNav1.5, [Peak INa], late hNav1.5 [Late INa]) with recommended protocols (to minimize variance) using five APC platforms across 17 sites. IC50 variability (25/75 percentiles) differed for drugs and currents (e.g., 10.4-fold for dofetilide block of hERG current and 4-fold for mexiletine block of hNav1.5 current). Within-platform variance predominated for 4 of 12 hERG blocking drugs and 4 of 6 hNav1.5 blocking drugs. hERG and hNav1.5 block. Bland-Altman plots depicted varying agreement across APC platforms. A follow-up survey suggested multiple sources of experimental variability that could be further minimized by stricter adherence to standard protocols. Adoption of best practices would ensure less variable APC datasets and improved safety margins and proarrhythmic risk assessments.

11.
Assay Drug Dev Technol ; 5(5): 617-27, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17939752

RESUMEN

A cardiac safety concern for QT prolongation and potential for pro-arrhythmia exists due to inhibition of the cardiac slowly activating delayed rectifier potassium current, I(Ks). Selective inhibitors of I Ks have been shown to prolong the QT interval in animal models. On the other hand, I Ks has been considered as a target for anti-arrhythmic therapy due to certain biophysical and pharmacological properties and its expression pattern in the heart. Consequently, we have developed a method utilizing a human embryonic kidney (HEK)-293 cell line expressing KCNQ1/KCNE1 (genes that encode for the I Ks channel) as a model for screening of new compounds for I Ks activity. This study was designed (1) to establish and optimize the experimental conditions for measurement of I Ks using PatchXpress() 7000A (Molecular Devices Corporation, Sunnyvale, CA) and (2) to test the effects of I Ks inhibitors and compare the 50% inhibitory concentration (IC50) values determined with PatchXpress versus conventional patch clamp in order to validate the PatchXpress approach for higher-throughput I Ks screening. Biophysical properties of HEK/I Ks recorded with PatchXpress were similar to those recorded with conventional patch-clamp and reported in the literature. The IC50 values for I Ks block determined with PatchXpress correlated well with conventional patch-clamp values from HEK-293 cells as well as from native cardiac myocytes for the majority of compounds tested. Electrophysiological recording of I Ks expressed in HEK-293 cells with the PatchXpress is of acceptable quality for screening purposes. This approach can be utilized for functional prescreening of development compounds for I Ks inhibition either for optimizing lead anti-arrhythmic or other therapeutic candidates or to exclude compounds with the potential to prolong QT.


Asunto(s)
Fármacos Cardiovasculares/farmacología , Evaluación Preclínica de Medicamentos/instrumentación , Canal de Potasio KCNQ1/efectos de los fármacos , Técnicas de Placa-Clamp/instrumentación , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Animales , Células CHO , Línea Celular , Química Farmacéutica , Cricetinae , Cricetulus , Interpretación Estadística de Datos , Electrofisiología , Canales de Potasio Éter-A-Go-Go/efectos de los fármacos , Cobayas , Humanos , Técnicas In Vitro , Miocitos Cardíacos/efectos de los fármacos
12.
Sci Rep ; 7: 44820, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28327633

RESUMEN

Severe bradycardia/bradyarrhythmia following coadministration of the HCV-NS5B prodrug sofosbuvir with amiodarone was recently reported. Our previous preclinical in vivo experiments demonstrated that only certain HCV-NS5B prodrugs elicit bradycardia when combined with amiodarone. In this study, we evaluate the impact of HCV-NS5B prodrug phosphoramidate diastereochemistry (D-/L-alanine, R-/S-phosphoryl) in vitro and in vivo. Co-applied with amiodarone, L-ala,SP prodrugs increased beating rate and decreased beat amplitude in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), but D-ala,RP produgs, including MK-3682, did not. Stereochemical selectivity on emerging bradycardia was confirmed in vivo. Diastereomer pairs entered cells equally well, and there was no difference in intracellular accumulation of L-ala,SP metabolites ± amiodarone, but no D-ala,RP metabolites were detected. Cathepsin A (CatA) inhibitors attenuated L-ala,SP prodrug metabolite formation, yet exacerbated L-ala,SP + amiodarone effects, implicating the prodrugs in these effects. Experiments indicate that pharmacological effects and metabolic conversion to UTP analog are L-ala,SP prodrug-dependent in cardiomyocytes.


Asunto(s)
Amiodarona/química , Amiodarona/farmacología , Antiarrítmicos/química , Antiarrítmicos/farmacología , Antivirales/química , Antivirales/farmacología , Interacciones Farmacológicas , Amiodarona/farmacocinética , Animales , Antiarrítmicos/farmacocinética , Antivirales/farmacocinética , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Cobayas , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Estructura Molecular , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Profármacos/química , Profármacos/farmacología , Relación Estructura-Actividad , Proteínas no Estructurales Virales/antagonistas & inhibidores
13.
J Biomol Screen ; 21(1): 1-11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26170255

RESUMEN

For the past decade, cardiac safety screening to evaluate the propensity of drugs to produce QT interval prolongation and Torsades de Pointes (TdP) arrhythmia has been conducted according to ICH S7B and ICH E14 guidelines. Central to the existing approach are hERG channel assays and in vivo QT measurements. Although effective, the present paradigm carries a risk of unnecessary compound attrition and high cost, especially when considering costly thorough QT (TQT) studies conducted later in drug development. The C: omprehensive I: n Vitro P: roarrhythmia A: ssay (CiPA) initiative is a public-private collaboration with the aim of updating the existing cardiac safety testing paradigm to better evaluate arrhythmia risk and remove the need for TQT studies. It is hoped that CiPA will produce a standardized ion channel assay approach, incorporating defined tests against major cardiac ion channels, the results of which then inform evaluation of proarrhythmic actions in silico, using human ventricular action potential reconstructions. Results are then to be confirmed using human (stem cell-derived) cardiomyocytes. This perspective article reviews the rationale, progress of, and challenges for the CiPA initiative, if this new paradigm is to replace existing practice and, in time, lead to improved and widely accepted cardiac safety testing guidelines.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Corazón/efectos de los fármacos , Animales , Humanos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/diagnóstico , Torsades de Pointes/inducido químicamente , Torsades de Pointes/diagnóstico
14.
Assay Drug Dev Technol ; 1(5): 637-45, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15090236

RESUMEN

Establishment of stable cell lines that constitutively express Ca(2+) channels at high density and that are useful for in vitro studies may be complicated by problems with seal quality and duration during whole-cell patch-clamp electrophysiology. The current studies describe the generation and characterization of cells that express the human alpha1H T-type Ca(2+) channel under the control of a tetracycline-inducible expression system. Western blot and immunostaining studies revealed that expression of the alpha1H protein occurred only in the presence of tetracycline. Using the whole-cell patch-clamp method, the cells displayed peak inward currents of 1.15 +/- 0.14 nA in response to voltage-clamp steps. The T-type Ca(2+) current was inhibited by the T-type Ca(2+) channel antagonist, mibefradil, with an IC(50) of 160 nM. This cell line, with inducible channel expression, sealed with longer duration during whole-cell patch-clamp recording when compared with a cell line that constitutively expresses the alpha1H Ca(2+) channel. Ca(2+) influx through this channel could also be detected after the addition of extracellular Ca(2+). The amount of Ca(2+) influx was dependent on the [Ca](o) with an EC(50) of 4 mM. The Ca(2+) influx was also inhibited by mibefradil with a potency (IC(50) = 183 nM) similar to that observed in the voltage-clamp studies. Overall, this inducible alpha1H Ca(2+) channel-expressing cell line is useful for the study of human T-type Ca(2+) channel function, and offers advantages over a similar cell line that constitutively expresses the channel.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/fisiología , Calcio/metabolismo , Riñón/fisiología , Potenciales de la Membrana/fisiología , Ingeniería de Proteínas/métodos , Tetraciclina/farmacología , Canales de Calcio Tipo T/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Línea Celular , Células Cultivadas , Humanos , Activación del Canal Iónico/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/embriología , Potenciales de la Membrana/efectos de los fármacos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo
15.
Channels (Austin) ; 8(5): 421-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483585

RESUMEN

Two classes of small homologous basic proteins, mamba snake dendrotoxins (DTX) and bovine pancreatic trypsin inhibitor (BPTI), block the large conductance Ca(2+)-activated K(+) channel (BKCa, KCa1.1) by production of discrete subconductance events when added to the intracellular side of the membrane. This toxin-channel interaction is unlikely to be pharmacologically relevant to the action of mamba venom, but as a fortuitous ligand-protein interaction, it has certain biophysical implications for the mechanism of BKCa channel gating. In this work we examined the subconductance behavior of 9 natural dendrotoxin homologs and 6 charge neutralization mutants of δ-dendrotoxin in the context of current structural information on the intracellular gating ring domain of the BKCa channel. Calculation of an electrostatic surface map of the BKCa gating ring based on the Poisson-Boltzmann equation reveals a predominantly electronegative surface due to an abundance of solvent-accessible side chains of negatively charged amino acids. Available structure-activity information suggests that cationic DTX/BPTI molecules bind by electrostatic attraction to site(s) on the gating ring located in or near the cytoplasmic side portals where the inactivation ball peptide of the ß2 subunit enters to block the channel. Such an interaction may decrease the apparent unitary conductance by altering the dynamic balance of open versus closed states of BKCa channel activation gating.


Asunto(s)
Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Animales , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Venenos Elapídicos/farmacología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Canales de Potasio de Gran Conductancia Activados por el Calcio/antagonistas & inhibidores , Modelos Moleculares , Ratas , Electricidad Estática , Relación Estructura-Actividad
16.
J Pharmacol Toxicol Methods ; 68(1): 137-49, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23649000

RESUMEN

INTRODUCTION: In recent years, the anesthetized guinea pig has been used increasingly to evaluate the cardiovascular effects of drug-candidate molecules during lead optimization prior to conducting longer, more resource intensive safety pharmacology and toxicology studies. The aim of these studies was to evaluate the correlations between pharmacologically-induced ECG changes in the anesthetized cardiovascular guinea pig (CVGP) with ECG changes in conscious non-rodent telemetry models, human clinical studies and effects on key cardiac ion channels. METHODS: We compared the effects of 38 agents on ion channel inhibition to their ECG effects in the CVGP. 26 of these agents were also evaluated in non-rodent telemetry and compared to the results in the CVGP. RESULTS: The CVGP was highly sensitive for detecting QTc, PR and QRS interval prolongation mediated by inhibition of hERG, hCav1.2 and hNav1.5, respectively. There were robust correlations between ion channel inhibitory potencies and the free plasma concentrations (Cu) producing prolongation of the QTc, PR or QRS interval. Further evaluation showed that ECG changes in the CVGP were predictive of their effects on the QTc, PR and QRS intervals in non-rodent telemetry models with 92%, 92% and 100% accuracy, respectively. The CVGP proved to be 100% specific and 88%, 75% and 100% sensitive for QTc, PR and QRS interval prolongation, respectively. Similarly, the Cu that prolonged the QTc, PR and QRS in CVGP and humans correlated well. DISCUSSION: The CVGP is a sensitive model for assessing QTc, PR and QRS prolongation elicited by effects on hERG, hCav1.2 and hNav1.5, respectively. ECG changes in the CVGP are predictive of changes in non-rodent telemetry models and in humans (QTc). ECG parameters can be reliably evaluated with the CVGP model which increases the efficiency of CV derisking. Importantly, the design and implementation of this model is consistent with the "3Rs" for animal research.


Asunto(s)
Diseño de Fármacos , Canales Iónicos/efectos de los fármacos , Síndrome de QT Prolongado/inducido químicamente , Anestesia , Animales , Electrocardiografía , Cobayas , Humanos , Canales Iónicos/metabolismo , Masculino , Modelos Animales , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Telemetría , Pruebas de Toxicidad/métodos
17.
J Pharmacol Toxicol Methods ; 62(2): 107-18, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20601018

RESUMEN

INTRODUCTION: The cardiac Na+ current (I(Na)) underlies the rapid depolarization of the cardiac myocyte, and block of the current slows cardiac conduction and increases the risk of ventricular arrhythmia. A feature of Na+ channel block termed use-dependence is important to the assessment of blocking potency. We developed a robust automated patch clamp assay to rapidly and routinely assess the use-dependent block of I(Na) by drug candidates. The assay clarifies whether drug candidates block more potently at increased heart rates and provides a quantitative score of use-dependence. METHODS: A use-dependent cardiac I(Na) assay was implemented on the PatchXpress 7000A, an automated whole-cell patch clamp device, using a HEK cell line stably expressing the human cardiac Na+ channel, Na(V)1.5. Stable recordings lasting up to 30 minutes were achieved by selection of holding potential (-100 mV) as well as an appropriate osmotic gradient to prevent time-dependent loss of cell capacitance and current. The final protocol allows evaluation of I(Na) inhibition at three pulsing rates at three test concentrations for each recorded cell. RESULTS: IC(50) values obtained for three standard I(Na) blockers lidocaine, mexiletine, and flecainide, at pulsing frequencies of 0.2 Hz, 1 Hz, and 3 Hz, were compared to IC(50) values obtained with conventional pipette patch clamp of the Na(V)1.5 cell line and of guinea pig cardiac myocytes using matched voltage protocols and pulsing rates. Absolute potencies were well correlated only under conditions of matched holding potential and fell within an approximately three-fold window. While absolute potencies could vary widely with holding potential, the fold increases in potency with increases in pulsing rates were less prone to variation of the holding potential. DISCUSSION: Use-dependence of cardiac Na+ channel block can be rapidly assessed in the PatchXpress platform and quantified at early stages of drug development to guide lead optimization.


Asunto(s)
Proteínas Musculares/antagonistas & inhibidores , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Sodio/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Flecainida/farmacología , Cobayas , Células HEK293 , Humanos , Lidocaína/farmacología , Mexiletine/farmacología , Proteínas Musculares/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5 , Canales de Sodio/metabolismo
18.
J Pharmacol Toxicol Methods ; 59(2): 62-72, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19367686

RESUMEN

INTRODUCTION: Ca(v)1.2 channels play an important role in shaping the cardiac action potential. Screening pharmaceutical compounds for Ca(v)1.2 block is very important in developing drugs without cardiac liability. Ca(v)1.2 screening has been traditionally done using fluorescence assays, but these assays have some limitations. Patch clamping is considered the gold standard for ion channel studies, but is very labor intensive. The purpose of this study was to develop a robust medium throughput Ca(v)1.2 screening assay in PatchXpress 7000A by optimizing cell isolation conditions, recording solutions and experimental parameters. Under the conditions established, structurally different standard Ca(v)1.2 antagonists and an agonist were tested. METHODS: HEK-293 cells stably transfected with hCa(v)1.2 L-type Ca channel were used. For experiments, cells were isolated using 0.05% Trypsin. Currents were recorded in the presence of 30 mM extracellular Ba2+ and low magnesium intracellular recording solution to minimize rundown. Ca(v)1.2 currents were elicited from a holding potential of -60 mV at 0.05 Hz to increase pharmacological sensitivity and minimize rundown. Test compounds were applied at increasing concentrations for 5 min followed by a brief washout. RESULTS: Averaged peak Ca(v)1.2 current amplitudes were increased from 10 pA/pF to 15 pA/pF by shortening cell incubation and trypsin exposure time from 2.5 min at 37 degrees C to 1 min at room temperature and adding 0.2 mM cAMP to the intracellular solution. Rundown was minimized from 2%/min to 0.5%/min by reducing the intracellular free Mg2+ from 2.7 mM to 0.2 mM and adding 100 nM Ca2+. Under the established conditions, we tested 8 structurally different antagonists and an agonist. The IC(50) values obtained ranked well against published values and results obtained using traditional clamp experiments performed in parallel using the expressed cell line and native myocytes. DISCUSSION: This assay can be used as a reliable pharmacological screening tool for Ca(v)1.2 block to assess compounds for cardiac liability during lead optimization.


Asunto(s)
Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Agonistas de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Evaluación Preclínica de Medicamentos/instrumentación , Nifedipino/farmacología , Técnicas de Placa-Clamp/instrumentación , Animales , Bario/metabolismo , Línea Celular , Colagenasas/farmacología , Relación Dosis-Respuesta a Droga , Electrofisiología , Cobayas , Ventrículos Cardíacos/citología , Humanos , Concentración 50 Inhibidora , Riñón/citología , Masculino , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Péptido Hidrolasas/farmacología , Temperatura , Factores de Tiempo , Transfección , Tripsina/farmacología
19.
Am J Physiol Heart Circ Physiol ; 295(5): H1867-81, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18757482

RESUMEN

Stable coexpression of human (h)KCNQ1 and hKCNE1 in human embryonic kidney (HEK)-293 cells reconstitutes a nativelike slowly activating delayed rectifier K+ current (HEK-I(Ks)), allowing beta-adrenergic modulation of the current by stimulation of endogenous receptors in the host cell line. HEK-I(Ks) was enhanced two- to fourfold by isoproterenol (EC50 = 13 nM), forskolin (10 microM), or 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate (50 microM), indicating an intact cAMP-dependent ion channel-regulating pathway analogous to the PKA-dependent regulation observed in native cardiac myocytes. Activation kinetics of HEK-I(Ks) were accurately fit with a novel modified second-order Hodgkin-Huxley (H-H) gating model incorporating a fast and a slow gate, each independent of each other in scale and adrenergic response, or a "heterodimer" model. Macroscopically, beta-adrenergic enhancement shifted the current activation threshold to more negative potentials and accelerated activation kinetics while leaving deactivation kinetics relatively unaffected. Modeling of the current response using the H-H model indicated that observed changes in gating could be explained by modulation of the opening rate of the fast gate. Under control conditions at nearly physiological temperatures (35 degrees C), rate-dependent accumulation of HEK-I(Ks) was observed only at pulse frequencies exceeding 3 Hz. Rate-dependent accumulation of I(Ks) at high pulsing rate had two phases, an initial staircaselike effect followed by a slower, incremental accumulation phase. These phases are readily interpreted in the context of a heterodimeric H-H model with two independent gates with differing closing rates. In the presence of isoproterenol after normalizing for its tonic effects, rate-dependent accumulation of HEK-I(Ks) appeared at lower pulse frequencies and was slightly enhanced (approximately 25%) over control.


Asunto(s)
Activación del Canal Iónico , Canal de Potasio KCNQ1/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Receptores Adrenérgicos beta/metabolismo , Adenilil Ciclasas/metabolismo , Agonistas Adrenérgicos beta/farmacología , Línea Celular , Colforsina/farmacología , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , AMP Cíclico/farmacología , Activadores de Enzimas/farmacología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Isoproterenol/farmacología , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Potasio KCNQ1/genética , Cinética , Potenciales de la Membrana , Modelos Cardiovasculares , Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje/genética , Receptores Adrenérgicos beta/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Temperatura , Tionucleótidos/farmacología , Transfección
20.
Anal Biochem ; 327(1): 74-81, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15033513

RESUMEN

The current studies describe a new, robust cell-based functional assay useful to characterize L-type voltage-dependent calcium channels and their antagonists. The basis of this assay is measurement in plate format of Ca2+ influx through the L-type Ca2+ channel complex (alpha1C, alpha2delta, and beta2a subunits) in response to potassium-mediated depolarization; EC(50)=11 mM [K+](o). The Ca2+ influx was inhibited by the L-type Ca2+ channel antagonist, nimodipine; IC(50)=59 nM. These cells were also transfected with the Kir2.3 inward rectifier K(+) channel, which allows for changing the cell membrane potential by modulation of extracellular [K](o); -65 mV in physiological [K](o) and -28 mV in 30 mM [K](o) containing buffer. The conformational state of the voltage-sensitive Ca2+ channel is altered under these different conditions. Under the depolarized condition, nimodipine was a more potent antagonist, inhibiting Ca2+ influx with an IC(50) value of 3 nM. The results demonstrate that the interaction of nimodipine and other antagonists with the channel is modulated by changes in membrane potential and thus the state of the channel. Overall, this novel assay can be used to identify state-dependent calcium channel antagonists and should be useful for evaluating state-dependent inhibitory potency of a large number of samples.


Asunto(s)
Bioensayo/métodos , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Fluorometría , Canales de Potasio de Rectificación Interna , Canales de Calcio/metabolismo , Línea Celular , Electrofisiología , Humanos , Potenciales de la Membrana/efectos de los fármacos , Nimodipina/farmacología , Potasio/metabolismo , Potasio/farmacología , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA