Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Bacteriol ; 198(21): 2945-2954, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27528507

RESUMEN

Thermosensors detect temperature changes and trigger cellular responses crucial for survival at different temperatures. The thermosensor DesK is a transmembrane (TM) histidine kinase which detects a decrease in temperature through its TM segments (TMS). Here, we address a key issue: how a physical stimulus such as temperature can be converted into a cellular response. We show that the thickness of Bacillus lipid membranes varies with temperature and that such variations can be detected by DesK with great precision. On the basis of genetic studies and measurements of in vitro activity of a DesK construct with a single TMS (minimal sensor DesK [MS-DesK]), reconstituted in liposomes, we propose an interplay mechanism directed by a conserved dyad, phenylalanine 8-lysine 10. This dyad is critical to anchor the only transmembrane segment of the MS-DesK construct to the extracellular water-lipid interphase and is required for the transmembrane segment of MS-DesK to function as a caliper for precise measurement of membrane thickness. The data suggest that positively charged lysine 10, which is located in the hydrophobic core of the membrane but is close to the water-lipid interface, pulls the transmembrane region toward the water phase to localize its charge at the interface. Nevertheless, the hydrophobic residue phenylalanine 8, located at the N-terminal extreme of the TMS, has a strong tendency to remain in the lipid phase, impairing access of lysine 10 to the water phase. The outcome of this interplay is a fine-tuned sensitivity to membrane thickness that elicits conformational changes that favor different signaling states of the protein. IMPORTANCE: The ability to sense and respond to extracellular signals is essential for cell survival. One example is the cellular response to temperature variation. How do cells "sense" temperature changes? It has been proposed that the bacterial thermosensor DesK acts as a molecular caliper measuring membrane thickness variations that would occur as a consequence of temperature changes and activates a pathway to restore membrane fluidity at low temperature. Here, we demonstrated that membrane thickness variations do occur at physiological temperatures by directly measuring Bacillus lipid membrane thickness. We also dissected the N-terminal sensing motif of MS-DesK at the molecular-biophysical level and found that the dyad phenylalanine-lysine at the water-lipid phase is critical for achievement of a fine-tuned sensitivity to temperature.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Membrana Celular/enzimología , Proteínas Quinasas/metabolismo , Secuencias de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Membrana Celular/química , Membrana Celular/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/genética , Temperatura
2.
Biochim Biophys Acta ; 1790(10): 1238-43, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19595746

RESUMEN

BACKGROUND: The DesK-DesR two-component system regulates the order of membrane lipids in the bacterium Bacillus subtilis by controlling the expression of the des gene coding for the delta 5-acyl-lipid desaturase. To activate des transcription, the membrane-bound histidine kinase DesK phosphorylates the response regulator DesR. This covalent modification of the regulatory domain of dimeric DesR promotes, in a cooperative fashion, the hierarchical occupation of two adjacent, non-identical, DesR-P binding sites, so that there is a shift in the equilibrium toward the tetrameric active form of the response regulator. However, the mechanism of regulation of DesR activity by phosphorylation and oligomerization is not well understood. METHODS: We employed deletion analysis and reporter fusions to study the role of the N-terminal domain on DesR activity. In addition, electromobility shift assays were used to analyze the binding capacity of the transcription factor to deletion mutants of the des promoter. RESULTS: We show that DesR lacking the N-terminal domain is still able to bind to the des promoter. We also demonstrate that if the RA site is moved closer to the -35 region of Pdes, the adjacent site RB is dispensable for activation. GENERAL SIGNIFICANCE: Our results indicate that the unphosphorylated regulatory domain of DesR obstructs the access of the recognition helix of DesR to its DNA target. In addition, we present evidence showing that RB is physiologically relevant to control the activation of the des gene when the levels of DesR-P reach a critical threshold.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Ácido Graso Desaturasas/metabolismo , Fluidez de la Membrana , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Sitios de Unión/genética , delta-5 Desaturasa de Ácido Graso , Ensayo de Cambio de Movilidad Electroforética , Ácido Graso Desaturasas/química , Ácido Graso Desaturasas/genética , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Fosforilación , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Quinasas/metabolismo , Multimerización de Proteína , Secuencias Reguladoras de Ácidos Nucleicos/genética , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA