Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Crit Rev Biochem Mol Biol ; 59(1-2): 128-138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38661126

RESUMEN

TP53 encodes a transcription factor that is centrally-involved in several pathways, including the control of metabolism, the stress response, DNA repair, cell cycle arrest, senescence, programmed cell death, and others. Since the discovery of TP53 as the most frequently-mutated tumor suppressor gene in cancer over four decades ago, the field has focused on uncovering target genes of this transcription factor that are essential for tumor suppression. This search has been fraught with red herrings, however. Dozens of p53 target genes were discovered that had logical roles in tumor suppression, but subsequent data showed that most were not tumor suppressive, and were dispensable for p53-mediated tumor suppression. In this review, we focus on p53 transcriptional targets in two categories: (1) canonical targets like CDKN1A (p21) and BBC3 (PUMA), which clearly play critical roles in p53-mediated cell cycle arrest/senescence and cell death, but which are not mutated in cancer, and for which knockout mice fail to develop spontaneous tumors; and (2) a smaller category of recently-described p53 target genes that are mutated in human cancer, and which appear to be critical for tumor suppression by p53. Interestingly, many of these genes encode proteins that control broad cellular pathways, like splicing and protein degradation, and several of them encode proteins that feed back to regulate p53. These include ZMAT3, GLS2, PADI4, ZBXW7, RFX7, and BTG2. The findings from these studies provide a more complex, but exciting, potential framework for understanding the role of p53 in tumor suppression.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Genes Supresores de Tumor , Regulación Neoplásica de la Expresión Génica
2.
Proc Natl Acad Sci U S A ; 120(7): e2212940120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36749725

RESUMEN

Missense mutations that inactivate p53 occur commonly in cancer, and germline mutations in TP53 cause Li Fraumeni syndrome, which is associated with early-onset cancer. In addition, there are over two hundred germline missense variants of p53 that remain uncharacterized. In some cases, these germline variants have been shown to encode lesser-functioning, or hypomorphic, p53 protein, and these alleles are associated with increased cancer risk in humans and mouse models. However, most hypomorphic p53 variants remain un- or mis-classified in clinical genetics databases. There thus exists a significant need to better understand the behavior of p53 hypomorphs and to develop a functional assay that can distinguish hypomorphs from wild-type p53 or benign variants. We report the surprising finding that two different African-centric genetic hypomorphs of p53 that occur in distinct functional domains of the protein share common activities. Specifically, the Pro47Ser variant, located in the transactivation domain, and the Tyr107His variant, located in the DNA binding domain, both share increased propensity to misfold into a conformation specific for mutant, misfolded p53. Additionally, cells and tissues containing these hypomorphic variants show increased NF-κB activity. We identify a common gene expression signature from unstressed lymphocyte cell lines that is shared between multiple germline hypomorphic variants of TP53, and which successfully distinguishes wild-type p53 and a benign variant from lesser-functioning hypomorphic p53 variants. Our findings will allow us to better understand the contribution of p53 hypomorphs to disease risk and should help better inform cancer risk in the carriers of p53 variants.


Asunto(s)
Síndrome de Li-Fraumeni , Proteína p53 Supresora de Tumor , Animales , Ratones , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Predisposición Genética a la Enfermedad , Síndrome de Li-Fraumeni/genética , Genes p53 , Heterocigoto , Mutación de Línea Germinal
3.
J Biol Chem ; 298(12): 102637, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36309086

RESUMEN

The tumor suppressor protein p53 suppresses cancer by regulating processes such as apoptosis, cell cycle arrest, senescence, and ferroptosis, which is an iron-mediated and lipid peroxide-induced cell death pathway. Whereas numerous p53 target genes have been identified, only a few appear to be critical for the suppression of tumor growth. Additionally, while ferroptosis is clearly implicated in tumor suppression by p53, few p53 target genes with roles in ferroptosis have been identified. We have previously studied germline missense p53 variants that are hypomorphic or display reduced activity. These hypomorphic variants are associated with increased risk for cancer, but they retain the majority of p53 transcriptional function; as such, study of the transcriptional targets of these hypomorphs has the potential to reveal the identity of other genes important for p53-mediated tumor suppression. Here, using RNA-seq in lymphoblastoid cell lines, we identify PLTP (phospholipid transfer protein) as a p53 target gene that shows impaired transactivation by three different cancer-associated p53 hypomorphs: P47S (Pro47Ser, rs1800371), Y107H (Tyr107His, rs368771578), and G334R (Gly334Arg, rs78378222). We show that enforced expression of PLTP potently suppresses colony formation in human tumor cell lines. We also demonstrate that PLTP regulates the sensitivity of cells to ferroptosis. Taken together, our findings reveal PLTP to be a p53 target gene that is extremely sensitive to p53 transcriptional function and which has roles in growth suppression and ferroptosis.


Asunto(s)
Ferroptosis , Neoplasias , Proteínas de Transferencia de Fosfolípidos , Humanos , Apoptosis , Muerte Celular/genética , Línea Celular Tumoral , Neoplasias/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo
4.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659891

RESUMEN

The pathogenesis of many rare tumor types is poorly understood, preventing the design of effective treatments. Solitary fibrous tumors (SFTs) are neoplasms of mesenchymal origin that affect 1/1,000,000 individuals every year and are clinically assimilated to soft tissue sarcomas. SFTs can arise throughout the body and are usually managed surgically. However, 30-40% of SFTs will relapse local-regionally or metastasize. There are no systemic therapies with durable activity for malignant SFTs to date. The molecular hallmark of SFTs is a gene fusion between the NAB2 and STAT6 loci on chromosome 12, resulting in a chimeric protein of poorly characterized function called NAB2-STAT6. We use primary samples and an inducible cell model to discover that NAB2-STAT6 operates as a transcriptional coactivator for a specific set of enhancers and promoters that are normally targeted by the EGR1 transcription factor. In physiological conditions, NAB2 is primarily localized to the cytoplasm and only a small nuclear fraction is available to operate as a co-activator of EGR1 targets. NAB2-STAT6 redirects NAB1, NAB2, and additional EGR1 to the nucleus and bolster the expression of neuronal EGR1 targets. The STAT6 moiety of the fusion protein is a major driver of its nuclear localization and further contributes to NAB2's co-activating abilities. In primary tumors, NAB2-STAT6 activates a neuroendocrine gene signature that sets it apart from most sarcomas. These discoveries provide new insight into the pathogenesis of SFTs and reveal new targets with therapeutic potential.

5.
Nat Commun ; 14(1): 4403, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479684

RESUMEN

The p53 tumor suppressor regulates multiple context-dependent tumor suppressive programs. Although p53 is mutated in ~90% of small cell lung cancer (SCLC) tumors, how p53 mediates tumor suppression in this context is unknown. Here, using a mouse model of SCLC in which endogenous p53 expression can be conditionally and temporally regulated, we show that SCLC tumors maintain a requirement for p53 inactivation. However, we identify tumor subtype heterogeneity between SCLC tumors such that p53 reactivation induces senescence in a subset of tumors, while in others, p53 induces necrosis. We pinpoint cyclophilins as critical determinants of a p53-induced transcriptional program that is specific to SCLC tumors and cell lines poised to undergo p53-mediated necrosis. Importantly, inhibition of cyclophilin isomerase activity, or genetic ablation of specific cyclophilin genes, suppresses p53-mediated necrosis by limiting p53 transcriptional output without impacting p53 chromatin binding. Our study demonstrates that intertumoral heterogeneity in SCLC influences the biological response to p53 restoration, describes a cyclophilin-dependent mechanism of p53-regulated cell death, and uncovers putative mechanisms for the treatment of this most-recalcitrant tumor type.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Ciclofilinas/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Proteína p53 Supresora de Tumor/genética , Necrosis/genética , Neoplasias Pulmonares/genética
6.
Cancer Discov ; 13(7): 1696-1719, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37140445

RESUMEN

TP53 is the most frequently mutated gene in cancer, yet key target genes for p53-mediated tumor suppression remain unidentified. Here, we characterize a rare, African-specific germline variant of TP53 in the DNA-binding domain Tyr107His (Y107H). Nuclear magnetic resonance and crystal structures reveal that Y107H is structurally similar to wild-type p53. Consistent with this, we find that Y107H can suppress tumor colony formation and is impaired for the transactivation of only a small subset of p53 target genes; this includes the epigenetic modifier PADI4, which deiminates arginine to the nonnatural amino acid citrulline. Surprisingly, we show that Y107H mice develop spontaneous cancers and metastases and that Y107H shows impaired tumor suppression in two other models. We show that PADI4 is itself tumor suppressive and that it requires an intact immune system for tumor suppression. We identify a p53-PADI4 gene signature that is predictive of survival and the efficacy of immune-checkpoint inhibitors. SIGNIFICANCE: We analyze the African-centric Y107H hypomorphic variant and show that it confers increased cancer risk; we use Y107H in order to identify PADI4 as a key tumor-suppressive p53 target gene that contributes to an immune modulation signature and that is predictive of cancer survival and the success of immunotherapy. See related commentary by Bhatta and Cooks, p. 1518. This article is highlighted in the In This Issue feature, p. 1501.


Asunto(s)
Genes p53 , Neoplasias , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Pueblo Africano/genética , Neoplasias/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Oncogene ; 40(25): 4281-4290, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34103683

RESUMEN

The TP53 gene continues to hold distinction as the most frequently mutated gene in cancer. Since its discovery in 1979, hundreds of research groups have devoted their efforts toward understanding why this gene is so frequently selected against by tumors, with the hopes of harnessing this information toward the improved therapy of cancer. The result is that this protein has been meticulously analyzed in tumor and normal cells, resulting in over 100,000 publications, with an average of 5000 papers published on p53 every year for the past decade. The journey toward understanding p53 function has been anything but straightforward; in fact, the field is notable for the numerous times that established paradigms not only have been shifted, but in fact have been shattered or reversed. In this review, we will discuss the manuscripts, or series of manuscripts, that have most radically changed our thinking about how this tumor suppressor functions, and we will delve into the emerging challenges for the future in this important area of research. It is hoped that this review will serve as a useful historical reference for those interested in p53, and a useful lesson on the need to be flexible in the face of established paradigms.


Asunto(s)
Genes p53/genética , Neoplasias/genética , Proteína p53 Supresora de Tumor/genética , Animales , Humanos , Mutación/genética
8.
Cancer Res ; 80(23): 5270-5281, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33023943

RESUMEN

The protein chaperone HSP70 is overexpressed in many cancers including colorectal cancer, where overexpression is associated with poor survival. We report here the creation of a uniquely acting HSP70 inhibitor (HSP70i) that targets multiple compartments in the cancer cell, including mitochondria. This inhibitor was mitochondria toxic and cytotoxic to colorectal cancer cells, but not to normal colon epithelial cells. Inhibition of HSP70 was efficacious as a single agent in primary and metastatic models of colorectal cancer and enabled identification of novel mitochondrial client proteins for HSP70. In a syngeneic colorectal cancer model, the inhibitor increased immune cell recruitment into tumors. Cells treated with the inhibitor secreted danger-associated molecular patterns (DAMP), including ATP and HMGB1, and functioned effectively as a tumor vaccine. Interestingly, the unique properties of this HSP70i in the disruption of mitochondrial function and the inhibition of proteostasis both contributed to DAMP release. This HSP70i constitutes a promising therapeutic opportunity in colorectal cancer and may exhibit antitumor activity against other tumor types. SIGNIFICANCE: These findings describe a novel HSP70i that disrupts mitochondrial proteostasis, demonstrating single-agent efficacy that induces immunogenic cell death in treated tumors.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Alarminas/metabolismo , Animales , Sistema Libre de Células , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Proteína HMGB1/metabolismo , Células HT29 , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Mitocondrias/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA