Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Langmuir ; 30(20): 5973-81, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24785262

RESUMEN

In this study, we investigated how the adsorption properties governed by the nanometer-scale surface morphology of cluster-assembled titanium oxide films influence the catalytic activity of immobilized serine-protease trypsin. We developed an activity assay for the parallel detection of physisorbed enzyme activity and mass density of the adsorbed proteins in microarray format. The method combines a microarray-based technique and advanced quantitative confocal microscopy approaches based on fluorescent labeling of enzymes and covalent labeling of active sites of surface-bound enzymes. The observed diminishing trypsin binding affinity with increasing roughness, as opposed to the steep rise in its saturation uptake, was interpreted as heterogeneous nucleation-driven adsorption of trypsin at the rough nanoporous titania surface. The increase in relative activity of adsorbed trypsin is proportional to the fractional saturation of titania surfaces, expressed as percentage of saturation uptake. In turn, the specific activity, that is, the ratio of active proteins to the absolute number of adsorbed proteins, drops with growing saturation uptake and surface roughness, witnessing a reduction in the accessibility of enzyme active sites. Both geometrical constraints of titania nanopores and the clusterwise adsorption of trypsin were identified as the key factors underpinning the steric hindrance of the immobilized enzyme. These findings are relevant for the optimization of rough nanoporous surfaces as carriers of immobilized enzymes. The proposed activity assay is particularly advantageous in the screening of candidate materials for enzyme immobilization.


Asunto(s)
Enzimas Inmovilizadas/química , Membranas Artificiales , Análisis por Matrices de Proteínas , Titanio/química , Tripsina/química , Propiedades de Superficie
2.
J Nanosci Nanotechnol ; 13(1): 77-85, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23646700

RESUMEN

The nanoscale interaction of bacterial cells with solid surfaces is a key issue in biomedicine because it constitutes the first pathogenic event in the complex series of biofilm development on prosthetic devices. We report on an Atomic Force Microscopy study of the interaction of Escherichia coli and Pseudomonas aeruginosa bacterial cells with nanostructured titania thin films with controlled and reproducible nanometer-scale morphology, produced by assembling Ti clusters from the gas phase in a Supersonic Cluster Beam Deposition apparatus. The results demonstrate that bacterial adhesion and biofilm formation are significantly influenced by a pure physical stimulus, that is, the nanoscale variation of surface topography. The increase of nanoscale film roughness promotes bacterial adhesion with respect to flat substrates; remarkably, Pseudomonas aeruginosa cells lose their flagella on nanostructured TiO2 thin films upon adhesion, as opposed to same bacteria onto reference smooth glass substrates. Further, we have observed increased cell biovolume and other biofilm properties on nanostructured substrates in comparison with smooth glasses. These findings suggest that the design of innovative biomaterials with a suitable patterning of biomaterials surfaces can be an effective approach to control the adhesion of microorganisms to in vivo implant surfaces with active biological functionalities.


Asunto(s)
Adhesión Bacteriana/fisiología , Biopelículas/crecimiento & desarrollo , Microscopía de Fuerza Atómica/métodos , Nanoestructuras/química , Nanoestructuras/microbiología , Titanio/química , Ensayo de Materiales , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Propiedades de Superficie
3.
J Nanobiotechnology ; 6: 14, 2008 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19014710

RESUMEN

BACKGROUND: Poly(amidoamine)s (PAAs) are synthetic polymers endowed with many biologically interesting properties, being highly biocompatible, non toxic and biodegradable. Hydrogels based on PAAs can be easily modified during the synthesis by the introduction of functional co-monomers. Aim of this work is the development and testing of novel amphoteric nanosized poly(amidoamine) hydrogel film incorporating 4-aminobutylguanidine (agmatine) moieties to create RGD-mimicking repeating units for promoting cell adhesion. RESULTS: A systematic comparative study of the response of an epithelial cell line was performed on hydrogels with agmatine and on non-functionalized amphoteric poly(amidoamine) hydrogels and tissue culture plastic substrates. The cell adhesion on the agmatine containing substrates was comparable to that on plastic substrates and significantly enhanced with respect to the non-functionalized controls. Interestingly, spreading and proliferation on the functionalized supports are slower than on plastic exhibiting the possibility of an easier control of the cell growth kinetics. In order to favor the handling of the samples, a procedure for the production of bi-layered constructs was also developed by means the deposition via spin coating of a thin layer of hydrogel on a pre-treated cover slip. CONCLUSION: The obtained results reveal that PAAs hydrogels can be profitably functionalized and, in general, undergo physical and chemical modifications to meet specific requirements. In particular the incorporation of agmatine warrants good potential in the field of cell culturing and the development of supported functionalized hydrogels on cover glass are very promising substrates for applications in cell screening devices.

4.
Sci Rep ; 6: 36128, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27779205

RESUMEN

In the fields of biomaterials and tissue engineering simulating the native microenvironment is of utmost importance. As a major component of the microenvironment, the extracellular matrix (ECM) contributes to tissue homeostasis, whereas modifications of native features are associated with pathological conditions. Furthermore, three-dimensional (3D) geometry is an important feature of synthetic scaffolds favoring cell stemness, maintenance and differentiation. We analyzed the 3D structure, geometrical measurements and anisotropy of the ECM isolated from (i) human bladder mucosa (basal lamina and lamina propria) and muscularis propria; and, (ii) bladder carcinoma (BC). Next, binding and invasion of bladder metastatic cell line was observed on synthetic scaffold recapitulating anisotropy of tumoral ECM, but not on scaffold with disorganized texture typical of non-neoplastic lamina propria. This study provided information regarding the ultrastructure and geometry of healthy human bladder and BC ECMs. Likewise, using synthetic scaffolds we identified linearization of the texture as a mandatory feature for BC cell invasion. Integrating microstructure and geometry with biochemical and mechanical factors could support the development of an innovative synthetic bladder substitute or a tumoral scaffold predictive of chemotherapy outcomes.


Asunto(s)
Matriz Extracelular/patología , Invasividad Neoplásica/patología , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria/patología , Anciano , Anciano de 80 o más Años , Histocitoquímica , Humanos , Inmunohistoquímica , Masculino , Microscopía Electrónica de Rastreo , Persona de Mediana Edad , Membrana Mucosa/patología , Vejiga Urinaria/patología
5.
PLoS One ; 5(7): e11862, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20686681

RESUMEN

BACKGROUND: Protein adsorption is the first of a complex series of events that regulates many phenomena at the nano-bio interface, e.g. cell adhesion and differentiation, in vivo inflammatory responses and protein crystallization. A quantitative understanding of how nanoscale morphology influences protein adsorption is strategic for providing insight into all of these processes, however this understanding has been lacking until now. METHODOLOGY/PRINCIPAL FINDINGS: Here we introduce novel methods for quantitative high-throughput characterization of protein-surface interaction and we apply them in an integrated experimental strategy, to study the adsorption of a panel of proteins on nanostructured surfaces. We show that the increase of nanoscale roughness (from 15 nm to 30 nm) induces a decrease of protein binding affinity (

Asunto(s)
Nanoestructuras/química , Proteínas/química , Adsorción , Nanotecnología/métodos , Propiedades de Superficie
6.
Macromol Biosci ; 10(8): 842-52, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20437406

RESUMEN

Cell patterning is an important tool for organizing cells in surfaces and to reproduce in a simple way the tissue hierarchy and complexity of pluri-cellular life. The control of cell growth, proliferation and differentiation on solid surfaces is consequently important for prosthetics, biosensors, cell-based arrays, stem cell therapy and cell-based drug discovery concepts. We present a new electron beam lithography method for the direct and simultaneous fabrication of sub-micron topographical and chemical patterns, on a biocompatible and biodegradable PAA hydrogel. The localized e-beam modification of a hydrogel surface makes the pattern able to adsorb proteins in contrast with the anti-fouling surface. By also exploiting the selective attachment, growth and differentiation of PC12 cells, we fabricated a neural network of single cells connected by neuritis extending along microchannels. E-beam microlithography on PAA hydrogels opens up the opportunity of producing multifunctional microdevices incorporating complex topographies, allowing precise control of the growth and organization of individual cells.


Asunto(s)
Hidrogeles , Red Nerviosa , Nylons , Animales , Diferenciación Celular , División Celular , Microscopía de Fuerza Atómica , Microscopía Confocal , Células PC12 , Unión Proteica , Ratas
7.
J Biophotonics ; 1(4): 280-6, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19343651

RESUMEN

Snf2 related chromatin remodelling enzymes possess an ATPase subunit similar to that of the SF-II helicases which hydrolyzes ATP to track along DNA. Translocation and any resulting torque in the DNA could drive chromatin remodeling. To determine whether the ISWI protein can translocate and generate torque, tethered particle motion experiments and atomic force microscopy have been performed using recombinant ISWI expressed in E. coli. In the absence of ATP, ISWI bound to and wrapped DNA thereby shortening the overall contour length measured in atomic force micrographs. Although naked DNA only weakly stimulates ATP hydrolysis by ISWI, both atomic force microscopy and tethered particle motion data indicate that the protein generated loops in the presence of ATP. The duration of the looped state of the DNA measured using tethered particle motion was ATP-dependent. Finally, ISWI relaxed positively supercoiled plasmids visualized by atomic force microscopy. While other chromatin remodeling ATPases catalyze either DNA wrapping or looping, both are catalyzed by ISWI.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , ADN/química , Conformación de Ácido Nucleico , Proteínas Recombinantes/química , Factores de Transcripción/química , ADN/ultraestructura , Hidrólisis , Microscopía de Fuerza Atómica , Plásmidos/química , Plásmidos/ultraestructura
8.
Langmuir ; 24(15): 7830-41, 2008 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-18598064

RESUMEN

Understanding the interaction mechanisms of phospholipids with surfaces is crucial for the exploitation of lipid bilayers as models of the cell membrane as well as templates for biosensors. Moreover, controlling and manipulating lipid nanoparticles for the investigation of their properties by means of single-particle sensitive surface techniques require the ability to tailor the chemical properties of surfaces to achieve a stable and sparse binding of lipid particles, while keeping them from aggregating, or denaturing. Here we present a quantitative morphological and structural investigation by atomic force microscopy of supported phospholipid layers and nanostructures on cholesterol-functionalized glass surfaces, in comparison with other surfaces with different interfacial properties. We show that the functionalization of glass coverslips with cholesterol groups is a viable route for the production of optically transparent, scanning probe microscopy-compatible clean substrates for the effective immobilization of both extended single lipid bilayers and lipid nanoparticles.


Asunto(s)
Colesterol/química , Vidrio/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Fosfolípidos/química , Etilenodiaminas/química , Microscopía de Fuerza Atómica , Estructura Molecular , Polietilenglicoles/química , Propiedades de Superficie
9.
Biophys J ; 89(4): 2558-63, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16040760

RESUMEN

Many proteins "bind" DNA through positively charged amino acids on their surfaces. However, to overcome significant energetic and topological obstacles, proteins that bend or package DNA might also modulate the stiffness that is generated by repulsions between phosphates within DNA. Much previous work describes how ions change the flexibility of DNA in solution, but when considering macromolecules such as chromatin in which the DNA contacts the nucleosome core each turn of the double helix, it may be more appropriate to assess the flexibility of DNA on charged surfaces. Mica coated with positively charged molecules is a convenient substrate upon which the flexibility of DNA may be directly measured with a scanning force microscope. In the experiments described below, the flexibility of DNA increased as much as fivefold depending on the concentration and type of polyamine used to coat mica. Using theory that relates charge neutralization to flexibility, we predict that phosphate repulsions were attenuated by approximately 50% in the most flexible DNA observed. This simple method is an important tool for investigating the physiochemical causes and molecular biological effects of DNA flexibility, which affects DNA biochemistry ranging from chromatin stability to viral encapsulation.


Asunto(s)
Silicatos de Aluminio/química , ADN/química , ADN/ultraestructura , Electroquímica/métodos , Electricidad Estática , Aniones , ADN/análisis , ADN/efectos de la radiación , Elasticidad , Campos Electromagnéticos , Conformación de Ácido Nucleico/efectos de la radiación , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA