Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 75(5): 982-995.e9, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31444106

RESUMEN

Long non-coding RNAs (lncRNAs) are key regulatory molecules, but unlike with other RNAs, the direct link between their tertiary structure motifs and their function has proven elusive. Here we report structural and functional studies of human maternally expressed gene 3 (MEG3), a tumor suppressor lncRNA that modulates the p53 response. We found that, in an evolutionary conserved region of MEG3, two distal motifs interact by base complementarity to form alternative, mutually exclusive pseudoknot structures ("kissing loops"). Mutations that disrupt these interactions impair MEG3-dependent p53 stimulation in vivo and disrupt MEG3 folding in vitro. These findings provide mechanistic insights into regulation of the p53 pathway by MEG3 and reveal how conserved motifs of tertiary structure can regulate lncRNA biological function.


Asunto(s)
Genes Supresores de Tumor , Motivos de Nucleótidos , ARN Largo no Codificante/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células HCT116 , Humanos , Pliegue del ARN , ARN Largo no Codificante/genética , Proteína p53 Supresora de Tumor/genética
2.
Genome Res ; 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35858751

RESUMEN

Intronic polyadenylation (IPA) isoforms, which contain alternative last exons, are widely regulated in various biological processes and by many factors. However, little is known about their cytoplasmic regulation and translational status. In this study, we provide the first evidence that the genome-wide patterns of IPA isoform regulation during a biological process can be very distinct between the transcriptome and translatome, and between the nucleus and cytosol. Indeed, by 3'-seq analyses on breast cancer cells, we show that the genotoxic anticancer drug, doxorubicin, preferentially down-regulates the IPA to the last-exon (IPA:LE) isoform ratio in whole cells (as previously reported) but preferentially up-regulates it in polysomes. We further show that in nuclei, doxorubicin almost exclusively down-regulates the IPA:LE ratio, whereas in the cytosol, it preferentially up-regulates the isoform ratio, as in polysomes. Then, focusing on IPA isoforms that are up-regulated by doxorubicin in the cytosol and highly translated (up-regulated and/or abundant in polysomes), we identify several IPA isoforms that promote cell survival to doxorubicin. Mechanistically, by using an original approach of condition- and compartment-specific CLIP-seq (CCS-iCLIP) to analyze ELAVL1-RNA interactions in the nucleus and cytosol in the presence and absence of doxorubicin, as well as 3'-seq analyses upon ELAVL1 depletion, we show that the RNA-binding protein ELAVL1 mediates both nuclear down-regulation and cytosolic up-regulation of the IPA:LE isoform ratio in distinct sets of genes in response to doxorubicin. Altogether, these findings reveal differential regulation of the IPA:LE isoform ratio across subcellular compartments during drug response and its coordination by an RNA-binding protein.

3.
Nucleic Acids Res ; 51(10): 5193-5209, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37070602

RESUMEN

The long non-coding RNA EPR is expressed in epithelial tissues, binds to chromatin and controls distinct biological activities in mouse mammary gland cells. Because of its high expression in the intestine, in this study we have generated a colon-specific conditional targeted deletion (EPR cKO) to evaluate EPR in vivo functions in mice. EPR cKO mice display epithelium hyperproliferation, impaired mucus production and secretion, as well as inflammatory infiltration in the proximal portion of the large intestine. RNA sequencing analysis reveals a rearrangement of the colon crypt transcriptome with strong reduction of goblet cell-specific factors including those involved in the synthesis, assembly, transport and control of mucus proteins. Further, colon mucosa integrity and permeability are impaired in EPR cKO mice, and this results in higher susceptibility to dextran sodium sulfate (DSS)-induced colitis and tumor formation. Human EPR is down-regulated in human cancer cell lines as well as in human cancers, and overexpression of EPR in a colon cancer cell line results in enhanced expression of pro-apoptotic genes. Mechanistically, we show that EPR directly interacts with select genes involved in mucus metabolism whose expression is reduced in EPR cKO mice and that EPR deletion causes tridimensional chromatin organization changes.


Asunto(s)
Transformación Celular Neoplásica , Inflamación , Moco , ARN Largo no Codificante , Animales , Humanos , Ratones , Transformación Celular Neoplásica/inmunología , Colon/metabolismo , Modelos Animales de Enfermedad , Inflamación/inmunología , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
4.
J Transl Med ; 22(1): 845, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285385

RESUMEN

BACKGROUND: Doxorubicin is an important anticancer drug, however, elicits dose-dependently cardiomyopathy. Given its mode of action, i.e. topoisomerase inhibition and DNA damage, we investigated genetic events associated with cardiomyopathy and searched for mechanism-based possibilities to alleviate cardiotoxicity. We treated rats at clinically relevant doses of doxorubicin. Histopathology and transmission electron microscopy (TEM) defined cardiac lesions, and transcriptomics unveiled cardiomyopathy-associated gene regulations. Genomic-footprints revealed critical components of Abl1-p53-signaling, and EMSA-assays evidenced Abl1 DNA-binding activity. Gene reporter assays confirmed Abl1 activity on p53-targets while immunohistochemistry/immunofluorescence microscopy demonstrated Abl1, p53&p73 signaling. RESULTS: Doxorubicin treatment caused dose-dependently toxic cardiomyopathy, and TEM evidenced damaged mitochondria and myofibrillar disarray. Surviving cardiomyocytes repressed Parkin-1 and Bnip3-mediated mitophagy, stimulated dynamin-1-like dependent mitochondrial fission and induced anti-apoptotic Bag1 signaling. Thus, we observed induced mitochondrial biogenesis. Transcriptomics discovered heterogeneity in cellular responses with minimal overlap between treatments, and the data are highly suggestive for distinct cardiomyocyte (sub)populations which differed in their resilience and reparative capacity. Genome-wide footprints revealed Abl1 and p53 enriched binding sites in doxorubicin-regulated genes, and we confirmed Abl1 DNA-binding activity in EMSA-assays. Extraordinarily, Abl1 signaling differed in the heart with highly significant regulations of Abl1, p53 and p73 in atrial cardiomyocytes. Conversely, in ventricular cardiomyocytes, Abl1 solely-modulated p53-signaling that was BAX transcription-independent. Gene reporter assays established Abl1 cofactor activity for the p53-reporter PG13-luc, and ectopic Abl1 expression stimulated p53-mediated apoptosis. CONCLUSIONS: The tyrosine kinase Abl1 is of critical importance in doxorubicin induced cardiomyopathy, and we propose its inhibition as means to diminish risk of cardiotoxicity.


Asunto(s)
Cardiomiopatías , Doxorrubicina , Miocitos Cardíacos , Proteínas Proto-Oncogénicas c-abl , Transducción de Señal , Proteína p53 Supresora de Tumor , Animales , Doxorrubicina/efectos adversos , Doxorrubicina/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteína p53 Supresora de Tumor/metabolismo , Transducción de Señal/efectos de los fármacos , Cardiomiopatías/inducido químicamente , Cardiomiopatías/patología , Cardiomiopatías/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteínas Proto-Oncogénicas c-abl/genética , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/efectos de los fármacos , Atrios Cardíacos/patología , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Muerte Celular/efectos de los fármacos , Masculino , Ratas , Ratas Wistar
5.
Nucleic Acids Res ; 50(13): 7608-7622, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35748870

RESUMEN

EPR is a long non-coding RNA (lncRNA) that controls cell proliferation in mammary gland cells by regulating gene transcription. Here, we report on Mettl7a1 as a direct target of EPR. We show that EPR induces Mettl7a1 transcription by rewiring three-dimensional chromatin interactions at the Mettl7a1 locus. Our data indicate that METTL7A1 contributes to EPR-dependent inhibition of TGF-ß signaling. METTL7A1 is absent in tumorigenic murine mammary gland cells and its human ortholog (METTL7A) is downregulated in breast cancers. Importantly, re-expression of METTL7A1 in 4T1 tumorigenic cells attenuates their transformation potential, with the putative methyltransferase activity of METTL7A1 being dispensable for its biological functions. We found that METTL7A1 localizes in the cytoplasm whereby it interacts with factors implicated in the early steps of mRNA translation, associates with ribosomes, and affects the levels of target proteins without altering mRNA abundance. Overall, our data indicates that METTL7A1-a transcriptional target of EPR-modulates translation of select transcripts.


Asunto(s)
Neoplasias de la Mama , Metiltransferasas/metabolismo , ARN Largo no Codificante , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proliferación Celular , Cromatina/genética , Femenino , Humanos , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ribosomas/metabolismo
6.
Nucleic Acids Res ; 49(3): 1364-1382, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33444431

RESUMEN

Sequence-specific protein-DNA interactions are at the heart of the response of the tumor-suppressor p53 to numerous physiological and stress-related signals. Large variability has been previously reported in p53 binding to and transactivating from p53 response elements (REs) due, at least in part, to changes in direct (base) and indirect (shape) readouts of p53 REs. Here, we dissect p53 REs to decipher the mechanism by which p53 optimizes this highly regulated variable level of interaction with its DNA binding sites. We show that hemi-specific binding is more prevalent in p53 REs than previously envisioned. We reveal that sequences flanking the REs modulate p53 binding and activity and show that these effects extend to 4-5 bp from the REs. Moreover, we show here that the arrangement of p53 half-sites within its REs, relative to transcription direction, has been fine-tuned by selection pressure to optimize and regulate the response levels from p53 REs. This directionality in the REs arrangement is at least partly encoded in the structural properties of the REs. Furthermore, we show here that in the p21-5' RE the orientation of the half-sites is such that the effect of the flanking sequences is minimized and we discuss its advantages.


Asunto(s)
Elementos de Respuesta , Activación Transcripcional , Proteína p53 Supresora de Tumor/metabolismo , Sitios de Unión , ADN/química , ADN/metabolismo , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Regulación hacia Arriba
7.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887312

RESUMEN

The formation of a tetrameric assembly is essential for the ability of the tumor suppressor protein p53 to act as a transcription factor. Such a quaternary conformation is driven by a specific tetramerization domain, separated from the central DNA-binding domain by a flexible linker. Despite the distance, functional crosstalk between the two domains has been reported. This phenomenon can explain the pathogenicity of some inherited or somatically acquired mutations in the tetramerization domain, including the widespread R337H missense mutation present in the population in south Brazil. In this work, we combined computational predictions through extended all-atom molecular dynamics simulations with functional assays in a genetically defined yeast-based model system to reveal structural features of p53 tetramerization domains and their transactivation capacity and specificity. In addition to the germline and cancer-associated R337H and R337C, other rationally designed missense mutations targeting a significant salt-bridge interaction that stabilizes the p53 tetramerization domain were studied (i.e., R337D, D352R, and the double-mutation R337D plus D352R). The simulations revealed a destabilizing effect of the pathogenic mutations within the p53 tetramerization domain and highlighted the importance of electrostatic interactions between residues 337 and 352. The transactivation assay, performed in yeast by tuning the expression of wild-type and mutant p53 proteins, revealed that p53 tetramerization mutations could decrease the transactivation potential and alter transactivation specificity, in particular by better tolerating negative features in weak DNA-binding sites. These results establish the effect of naturally occurring variations at positions 337 and 352 on p53's conformational stability and function.


Asunto(s)
Saccharomyces cerevisiae , Proteína p53 Supresora de Tumor , ADN , Proteínas Mutantes/metabolismo , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
8.
Genome Res ; 27(10): 1645-1657, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28904012

RESUMEN

The tumor suppressor TP53 is the most frequently mutated gene product in human cancer. Close to half of all solid tumors carry inactivating mutations in the TP53 gene, while in the remaining cases, TP53 activity is abrogated by other oncogenic events, such as hyperactivation of its endogenous repressors MDM2 or MDM4. Despite identification of hundreds of genes regulated by this transcription factor, it remains unclear which direct target genes and downstream pathways are essential for the tumor suppressive function of TP53. We set out to address this problem by generating multiple genomic data sets for three different cancer cell lines, allowing the identification of distinct sets of TP53-regulated genes, from early transcriptional targets through to late targets controlled at the translational level. We found that although TP53 elicits vastly divergent signaling cascades across cell lines, it directly activates a core transcriptional program of ∼100 genes with diverse biological functions, regardless of cell type or cellular response to TP53 activation. This core program is associated with high-occupancy TP53 enhancers, high levels of paused RNA polymerases, and accessible chromatin. Interestingly, two different shRNA screens failed to identify a single TP53 target gene required for the anti-proliferative effects of TP53 during pharmacological activation in vitro. Furthermore, bioinformatics analysis of thousands of cancer genomes revealed that none of these core target genes are frequently inactivated in tumors expressing wild-type TP53. These results support the hypothesis that TP53 activates a genetically robust transcriptional program with highly distributed tumor suppressive functions acting in diverse cellular contexts.


Asunto(s)
Elementos de Facilitación Genéticos , Neoplasias/metabolismo , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Ciclo Celular , Humanos , Células MCF-7 , Neoplasias/genética , Neoplasias/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/genética
9.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31878115

RESUMEN

p53 is one of the most studied tumor suppressor proteins that plays an important role in basic biological processes including cell cycle, DNA damage response, apoptosis, and senescence. The human TP53 gene contains alternative promoters that produce N-terminally truncated proteins and can produce several isoforms due to alternative splicing. p53 function is realized by binding to a specific DNA response element (RE), resulting in the transactivation of target genes. Here, we evaluated the influence of quadruplex DNA structure on the transactivation potential of full-length and N-terminal truncated p53α isoforms in a panel of S. cerevisiae luciferase reporter strains. Our results show that a G-quadruplex prone sequence is not sufficient for transcription activation by p53α isoforms, but the presence of this feature in proximity to a p53 RE leads to a significant reduction of transcriptional activity and changes the dynamics between co-expressed p53α isoforms.


Asunto(s)
G-Cuádruplex , Isoformas de Proteínas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Humanos , Regiones Promotoras Genéticas/genética , Unión Proteica , Isoformas de Proteínas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Elementos de Respuesta/genética , Proteína p53 Supresora de Tumor/genética
10.
Molecules ; 23(8)2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30103421

RESUMEN

Reversine is a potent antitumor 2,6-diamino-substituted purine acting as an Aurora kinases inhibitor and interfering with cancer cell cycle progression. In this study we describe three reversine-related molecules, designed by docking calculation, that present structural modifications in the diamino units at positions 2 and 6. We investigated the conformations of the most stable prototropic tautomers of one of these molecules, the N6-cyclohexyl-N6-methyl-N2-phenyl-7H-purine-2,6-diamine (3), by Density Functional Theory (DFT) calculation in the gas phase, water and chloroform, the last solvent considered to give insights into the detection of broad signals in NMR analysis. In all cases the HN(9) tautomer resulted more stable than the HN(7) form, but the most stable conformations changed in different solvents. Molecules 1⁻3 were evaluated on MCF-7 breast and HCT116 colorectal cancer cell lines showing that, while being less cytotoxic than reversine, they still caused cell cycle arrest in G2/M phase and polyploidy. Unlike reversine, which produced a pronounced cell cycle arrest in G2/M phase in all the cell lines used, similar concentrations of 1⁻3 were effective only in cells where p53 was deleted or down-regulated. Therefore, our findings support a potential selective role of these structurally simplified, reversine-related molecules in p53-defective cancer cells.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Purinas/síntesis química , Purinas/farmacología , Antineoplásicos/química , Neoplasias de la Mama , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Técnicas de Química Sintética , Neoplasias Colorrectales , Femenino , Humanos , Masculino , Microondas , Estructura Molecular , Purinas/química , Relación Estructura-Actividad
11.
Biochem Biophys Res Commun ; 483(1): 516-521, 2017 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28007599

RESUMEN

The TP53 gene is the most frequently mutated gene in human cancer and p53 protein plays a crucial role in gene expression and cancer protection. Its role is manifested by interactions with other proteins and DNA. p53 is a transcription factor that binds to DNA response elements (REs). Due to the palindromic nature of the consensus binding site, several p53-REs have the potential to form cruciform structures. However, the influence of cruciform formation on the activity of p53-REs has not been evaluated. Therefore, we prepared sets of p53-REs with identical theoretical binding affinity in their linear state, but different probabilities to form extra helical structures, for in vitro and in vivo analyses. Then we evaluated the presence of cruciform structures when inserted into plasmid DNA and employed a yeast-based assay to measure transactivation potential of these p53-REs cloned at a chromosomal locus in isogenic strains. We show that transactivation in vivo correlated more with relative propensity of an RE to form cruciforms than to its predicted in vitro DNA binding affinity for wild type p53. Structural features of p53-REs could therefore be an important determinant of p53 transactivation function.


Asunto(s)
Secuencias Invertidas Repetidas , Elementos de Respuesta , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Cromatina/genética , Simulación por Computador , Mutación , Activación Transcripcional , Proteína p53 Supresora de Tumor/metabolismo , Levaduras/genética
12.
Nucleic Acids Res ; 43(22): e153, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26240374

RESUMEN

Fluctuations in mRNA levels only partially contribute to determine variations in mRNA availability for translation, producing the well-known poor correlation between transcriptome and proteome data. Recent advances in microscopy now enable researchers to obtain high resolution images of ribosomes on transcripts, providing precious snapshots of translation in vivo. Here we propose RiboAbacus, a mathematical model that for the first time incorporates imaging data in a predictive model of transcript-specific ribosome densities and translational efficiencies. RiboAbacus uses a mechanistic model of ribosome dynamics, enabling the quantification of the relative importance of different features (such as codon usage and the 5' ramp effect) in determining the accuracy of predictions. The model has been optimized in the human Hek-293 cell line to fit thousands of images of human polysomes obtained by atomic force microscopy, from which we could get a reference distribution of the number of ribosomes per mRNA with unmatched resolution. After validation, we applied RiboAbacus to three case studies of known transcriptome-proteome datasets for estimating the translational efficiencies, resulting in an increased correlation with corresponding proteomes. RiboAbacus is an intuitive tool that allows an immediate estimation of crucial translation properties for entire transcriptomes, based on easily obtainable transcript expression levels.


Asunto(s)
Modelos Biológicos , Polirribosomas/ultraestructura , Biosíntesis de Proteínas , Transcriptoma , Animales , Células HEK293 , Humanos , Células MCF-7 , Microscopía de Fuerza Atómica , Proteómica , Conejos , Reticulocitos/ultraestructura , Ribosomas/ultraestructura , Programas Informáticos
13.
FEMS Yeast Res ; 16(7)2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27683095

RESUMEN

The observation that human transcription factors (TFs) can function when expressed in yeast cells has stimulated the development of various functional assays to investigate (i) the role of binding site sequences (herein referred to as response elements, REs) in transactivation specificity, (ii) the impact of polymorphic nucleotide variants on transactivation potential, (iii) the functional consequences of mutations in TFs and (iv) the impact of cofactors or small molecules. These approaches have found applications in basic as well as applied research, including the identification and the characterisation of mutant TF alleles from clinical samples. The ease of genome editing of yeast cells and the availability of regulated systems for ectopic protein expression enabled the development of quantitative reporter systems, integrated at a chosen chromosomal locus in isogenic yeast strains that differ only at the level of a specific RE targeted by a TF or for the expression of distinct TF alleles. In many cases, these assays were proven predictive of results in higher eukaryotes. The potential to work in small volume formats and the availability of yeast strains with modified chemical uptake have enhanced the scalability of these approaches. Next to well-established one-, two-, three-hybrid assays, the functional assays with non-chimeric human TFs enrich the palette of opportunities for functional characterisation. We review ∼25 years of research on human sequence-specific TFs expressed in yeast, with an emphasis on the P53 and NF-кB family of proteins, highlighting outcomes, advantages, challenges and limitations of these heterologous assays.


Asunto(s)
FN-kappa B/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Transgenes , Proteína p53 Supresora de Tumor/metabolismo , Técnicas del Sistema de Dos Híbridos , Expresión Génica , Marcación de Gen/métodos , Genética Microbiana/métodos , Humanos , FN-kappa B/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Proteína p53 Supresora de Tumor/genética
14.
BMC Genomics ; 16: 464, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26081755

RESUMEN

BACKGROUND: Many recent studies using ChIP-seq approaches cross-referenced to trascriptome data and also to potentially unbiased in vitro DNA binding selection experiments are detailing with increasing precision the p53-directed gene regulatory network that, nevertheless, is still expanding. However, most experiments have been conducted in established cell lines subjected to specific p53-inducing stimuli, both factors potentially biasing the results. RESULTS: We developed p53retriever, a pattern search algorithm that maps p53 response elements (REs) and ranks them according to predicted transactivation potentials in five classes. Besides canonical, full site REs, we developed specific pattern searches for non-canonical half sites and 3/4 sites and show that they can mediate p53-dependent responsiveness of associated coding sequences. Using ENCODE data, we also mapped p53 REs in about 44,000 distant enhancers and identified a 16-fold enrichment for high activity REs within those sites in the comparison with genomic regions near transcriptional start sites (TSS). Predictions from our pattern search were cross-referenced to ChIP-seq, ChIP-exo, expression, and various literature data sources. Based on the mapping of predicted functional REs near TSS, we examined expression changes of thirteen genes as a function of different p53-inducing conditions, providing further evidence for PDE2A, GAS6, E2F7, APOBEC3H, KCTD1, TRIM32, DICER, HRAS, KITLG and TGFA p53-dependent regulation, while MAP2K3, DNAJA1 and potentially YAP1 were identified as new direct p53 target genes. CONCLUSIONS: We provide a comprehensive annotation of canonical and non-canonical p53 REs in the human genome, ranked on predicted transactivation potential. We also establish or corroborate direct p53 transcriptional control of thirteen genes. The entire list of identified and functionally classified p53 REs near all UCSC-annotated genes and within ENCODE mapped enhancer elements is provided. Our approach is distinct from, and complementary to, existing methods designed to identify p53 response elements. p53retriever is available as an R package at: http://tomateba.github.io/p53retriever .


Asunto(s)
Genoma Humano , Elementos de Respuesta/genética , Proteína p53 Supresora de Tumor/genética , Algoritmos , Sitios de Unión , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Bases de Datos Genéticas , Doxorrubicina/farmacología , Humanos , Imidazoles/farmacología , Internet , Piperazinas/farmacología , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Elementos de Respuesta/efectos de los fármacos , Sitio de Iniciación de la Transcripción , Activación Transcripcional , Transcriptoma/efectos de los fármacos , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , Interfaz Usuario-Computador
15.
RNA Biol ; 12(3): 290-304, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826662

RESUMEN

PTCH1 gene codes for a 12-pass transmembrane receptor with a negative regulatory role in the Hedgehog-Gli signaling pathway. PTCH1 germline mutations cause Gorlin syndrome, a disorder characterized by developmental abnormalities and tumor susceptibility. The autosomal dominant inheritance, and the evidence for PTCH1 haploinsufficiency, suggests that fine-tuning systems of protein patched homolog 1 (PTC1) levels exist to properly regulate the pathway. Given the role of 5' untranslated region (5'UTR) in protein expression, our aim was to thoroughly explore cis-regulatory elements in the 5'UTR of PTCH1 transcript 1b. The (CGG)n polymorphism was the main potential regulatory element studied so far but with inconsistent results and no clear association between repeat number and disease risk. Using luciferase reporter constructs in human cell lines here we show that the number of CGG repeats has no strong impact on gene expression, both at mRNA and protein levels. We observed variability in the length of 5'UTR and changes in abundance of the associated transcripts after pathway activation. We show that upstream AUG codons (uAUGs) present only in longer 5'UTRs could negatively regulate the amount of PTC1 isoform L (PTC1-L). The existence of an internal ribosome entry site (IRES) observed using different approaches and mapped in the region comprising the CGG repeats, would counteract the effect of the uAUGs and enable synthesis of PTC1-L under stressful conditions, such as during hypoxia. Higher relative translation efficiency of PTCH1b mRNA in HEK 293T cultured hypoxia was observed by polysomal profiling and Western blot analyses. All our results point to an exceptionally complex and so far unexplored role of 5'UTR PTCH1b cis-element features in the regulation of the Hedgehog-Gli signaling pathway.


Asunto(s)
Regiones no Traducidas 5' , Regulación de la Expresión Génica , Sitios Internos de Entrada al Ribosoma , Biosíntesis de Proteínas , Receptores de Superficie Celular/genética , Secuencia de Bases , Hipoxia de la Célula/genética , Células HCT116 , Células HEK293 , Humanos , Células MCF-7 , Datos de Secuencia Molecular , Receptores Patched , Receptor Patched-1 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Superficie Celular/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Transducción de Señal
16.
Nucleic Acids Res ; 41(Database issue): D962-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23161690

RESUMEN

A novel resource centre for TP53 mutations and mutants has been developed (http://p53.fr). TP53 gene dysfunction can be found in the majority of human cancer types. The potential use of TP53 mutation as a biomarker for clinical studies or exposome analysis has led to the publication of thousands of reports describing the TP53 gene status in >10,000 tumours. The UMD TP53 mutation database was created in 1990 and has been regularly updated. The 2012 release of the database has been carefully curated, and all suspicious reports have been eliminated. It is available either as a flat file that can be easily manipulated or as novel multi-platform analytical software that has been designed to analyse various aspects of TP53 mutations. Several tools to ascertain TP53 mutations are also available for download. We have developed TP53MULTLoad, a manually curated database providing comprehensive details on the properties of 2549 missense TP53 mutants. More than 100,000 entries have been arranged in 39 different activity fields, such as change of transactivation on various promoters, apoptosis or growth arrest. For several hot spot mutants, multiple gain of function activities are also included. The database can be easily browsed via a graphical user interface.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genes p53 , Proteína p53 Supresora de Tumor/genética , Humanos , Internet , Mutación , Neoplasias/genética
17.
Nucleic Acids Res ; 41(18): 8637-53, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23892287

RESUMEN

Structural and biochemical studies have demonstrated that p73, p63 and p53 recognize DNA with identical amino acids and similar binding affinity. Here, measuring transactivation activity for a large number of response elements (REs) in yeast and human cell lines, we show that p53 family proteins also have overlapping transactivation profiles. We identified mutations at conserved amino acids of loops L1 and L3 in the DNA-binding domain that tune the transactivation potential nearly equally in p73, p63 and p53. For example, the mutant S139F in p73 has higher transactivation potential towards selected REs, enhanced DNA-binding cooperativity in vitro and a flexible loop L1 as seen in the crystal structure of the protein-DNA complex. By studying, how variations in the RE sequence affect transactivation specificity, we discovered a RE-transactivation code that predicts enhanced transactivation; this correlation is stronger for promoters of genes associated with apoptosis.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas Nucleares/química , Elementos de Respuesta , Transactivadores/química , Activación Transcripcional , Proteína p53 Supresora de Tumor/química , Proteínas Supresoras de Tumor/química , Alelos , Secuencia de Bases , Línea Celular Tumoral , Secuencia de Consenso , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Fenilalanina/química , Estructura Terciaria de Proteína , Purinas/análisis , Pirimidinas/análisis , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Transactivadores/genética , Transactivadores/metabolismo , Proteína Tumoral p73 , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
18.
Subcell Biochem ; 85: 119-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25201192

RESUMEN

The design of a broad-spectrum cancer drug would provide enormous clinical benefits to treat cancer patients. Most of cancerous cells have a mutation in the p53 gene that results in an inactive mutant p53 protein. For this reason, p53 is a prime target for the development of a broad-spectrum cancer drug. To provide the atomic information to rationally design a drug to recover p53 activity is the main goal of the structural studies on mutant p53. We review three mechanisms that influence p53 activity and provide information about how reactivation of mutant p53 can be achieved: stabilization of the active conformation of the DNA-binding domain of the protein, suppression of missense mutations in the DNA-binding domain by a second-site mutation, and increased transactivation.


Asunto(s)
Genes p53 , Mutación , Cristalografía , Humanos , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética
19.
Proc Natl Acad Sci U S A ; 109(16): 6066-71, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22474346

RESUMEN

The transcription factor p73 triggers developmental pathways and overlaps stress-induced p53 transcriptional pathways. How p53-family response elements determine and regulate transcriptional specificity remains an unsolved problem. In this work, we have determined the first crystal structures of p73 DNA-binding domain tetramer bound to response elements with spacers of different length. The structure and function of the adaptable tetramer are determined by the distance between two half-sites. The structures with zero and one base-pair spacers show compact p73 DNA-binding domain tetramers with large tetramerization interfaces; a two base-pair spacer results in DNA unwinding and a smaller tetramerization interface, whereas a four base-pair spacer hinders tetramerization. Functionally, p73 is more sensitive to spacer length than p53, with one base-pair spacer reducing 90% of transactivation activity and longer spacers reducing transactivation to basal levels. Our results establish the quaternary structure of the p73 DNA-binding domain required as a scaffold to promote transactivation.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/química , Proteínas Nucleares/química , Multimerización de Proteína , Estructura Terciaria de Proteína , Activación Transcripcional , Proteínas Supresoras de Tumor/química , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Estructura Cuaternaria de Proteína , Elementos de Respuesta/genética , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia , Proteína Tumoral p73 , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
20.
Hum Mutat ; 35(6): 689-701, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24449472

RESUMEN

Loss-of-function, partial-function, altered-function, dominant-negative, temperature sensitive, interfering, contact, structural, unfolded, misfolded, dimeric, monomeric, non-cooperative, unstable, supertrans, superstable, intragenic suppressor. TP53 mutants are many, more than 2,000 in fact, and they can be very diverse. Sporadic; germline; gain-of-function (GoF); oncogenic; rebel-angel; yin and yang; prion-like; metastasis-inducer; mediator of chemo-resistance; modifier of stemness. TP53 mutants can impact important cancer clinical variables, in multiple, often subtle ways, as revealed by cell-based assays as well as animal models. Here, we review studies investigating TP53 mutants for their effect on sequence-specific transactivation function, and especially recent findings on how TP53 mutants can exhibit GoF properties. We also review reports on TP53 mutants' impact on cancer cell transcriptomes and studies with Li-Fraumeni patients trying to classify and predict phenotypes in relation to experimentally determined transcription fingerprints. Finally, we provide an example of the complexity of correlating TP53 mutant functionality to clinical variables in sporadic cancer patients. Conflicting results and limitations of experimental approaches notwithstanding, the study of TP53 mutants has provided a rich body of knowledge, mostly available in the public domain and accessible through databases, which is beginning to impact cancer intervention strategies.


Asunto(s)
Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Síndrome de Li-Fraumeni/genética , Proteína p53 Supresora de Tumor/genética , Bases de Datos Genéticas , Genotipo , Humanos , Síndrome de Li-Fraumeni/patología , Fenotipo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA