Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 19(8): e1010721, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37639481

RESUMEN

The conserved transcription factor Myc regulates cell growth, proliferation and apoptosis, and its deregulation has been associated with human pathologies. Although specific miRNAs have been identified as fundamental components of the Myc tumorigenic program, how Myc regulates miRNA biogenesis remains controversial. Here we showed that Myc functions as an important regulator of miRNA biogenesis in Drosophila by influencing both miRNA gene expression and processing. Through the analysis of ChIP-Seq datasets, we discovered that nearly 56% of Drosophila miRNA genes show dMyc binding, exhibiting either the canonical or non-canonical E-box sequences within the peak region. Consistently, reduction of dMyc levels resulted in widespread downregulation of miRNAs gene expression. dMyc also modulates miRNA processing and activity by controlling Drosha and AGO1 levels through direct transcriptional regulation. By using in vivo miRNA activity sensors we demonstrated that dMyc promotes miRNA-mediated silencing in different tissues, including the wing primordium and the fat body. We also showed that dMyc-dependent expression of miR-305 in the fat body modulates Dmp53 levels depending on nutrient availability, having a profound impact on the ability of the organism to respond to nutrient stress. Indeed, dMyc depletion in the fat body resulted in extended survival to nutrient deprivation which was reverted by expression of either miR-305 or a dominant negative version of Dmp53. Our study reveals a previously unrecognized function of dMyc as an important regulator of miRNA biogenesis and suggests that Myc-dependent expression of specific miRNAs may have important tissue-specific functions.


Asunto(s)
Proteínas de Drosophila , MicroARNs , Animales , Humanos , Proteína p53 Supresora de Tumor/genética , Tejido Adiposo , Drosophila/genética , MicroARNs/genética , Nutrientes , Proteínas de Drosophila/genética , Proteínas Argonautas/genética
2.
Proc Natl Acad Sci U S A ; 120(15): e2216539120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37014862

RESUMEN

The adipose tissue plays a crucial role in metabolism and physiology, affecting animal lifespan and susceptibility to disease. In this study, we present evidence that adipose Dicer1 (Dcr-1), a conserved type III endoribonuclease involved in miRNA processing, plays a crucial role in the regulation of metabolism, stress resistance, and longevity. Our results indicate that the expression of Dcr-1 in murine 3T3L1 adipocytes is responsive to changes in nutrient levels and is subject to tight regulation in the Drosophila fat body, analogous to human adipose and hepatic tissues, under various stress and physiological conditions such as starvation, oxidative stress, and aging. The specific depletion of Dcr-1 in the Drosophila fat body leads to changes in lipid metabolism, enhanced resistance to oxidative and nutritional stress, and is associated with a significant increase in lifespan. Moreover, we provide mechanistic evidence showing that the JNK-activated transcription factor FOXO binds to conserved DNA-binding sites in the dcr-1 promoter, directly repressing its expression in response to nutrient deprivation. Our findings emphasize the importance of FOXO in controlling nutrient responses in the fat body by suppressing Dcr-1 expression. This mechanism coupling nutrient status with miRNA biogenesis represents a novel and previously unappreciated function of the JNK-FOXO axis in physiological responses at the organismal level.


Asunto(s)
Proteínas de Drosophila , MicroARNs , Animales , Humanos , Ratones , Drosophila/metabolismo , Longevidad/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Estrés Oxidativo/genética , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción Forkhead/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , ARN Helicasas DEAD-box/metabolismo
3.
PLoS Genet ; 15(8): e1008133, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31425511

RESUMEN

Coordinated intra- and inter-organ growth during animal development is essential to ensure a correctly proportioned individual. The Drosophila wing has been a valuable model system to reveal the existence of a stress response mechanism involved in the coordination of growth between adjacent cell populations and to identify a role of the fly orthologue of p53 (Dmp53) in this process. Here we identify the molecular mechanisms used by Dmp53 to regulate growth and proliferation in a non-autonomous manner. First, Dmp53-mediated transcriptional induction of Eiger, the fly orthologue of TNFα ligand, leads to the cell-autonomous activation of JNK. Second, two distinct signaling events downstream of the Eiger/JNK axis are induced in order to independently regulate tissue size and cell number in adjacent cell populations. Whereas expression of the hormone dILP8 acts systemically to reduce growth rates and tissue size of adjacent cell populations, the production of Reactive Oxygen Species-downstream of Eiger/JNK and as a consequence of apoptosis induction-acts in a non-cell-autonomous manner to reduce proliferation rates. Our results unravel how local and systemic signals act concertedly within a tissue to coordinate growth and proliferation, thereby generating well-proportioned organs and functionally integrated adults.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Proliferación Celular/genética , Drosophila melanogaster/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Larva/crecimiento & desarrollo , Sistema de Señalización de MAP Quinasas/genética , Proteínas de la Membrana/metabolismo , Modelos Animales , Tamaño de los Órganos/genética , Alas de Animales/crecimiento & desarrollo
4.
FEBS Lett ; 590(14): 2210-20, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27282776

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase's (GAPDH's) competitor of Siah Protein Enhances Life (GOSPEL) is the protein that competes with Siah1 for binding to GAPDH under NO-induced stress conditions preventing Siah1-bound GAPDH nuclear translocation and subsequent apoptosis. Under these conditions, GAPDH may also form amyloid-like aggregates proposed to be involved in cell death. Here, we report the in vitro enhancement by GOSPEL of NO-induced GAPDH aggregation resulting in the formation GOSPEL-GAPDH co-aggregates with some amyloid-like properties. Our findings suggest a new function for GOSPEL, contrasting with its helpful role against the apoptotic nuclear translocation of GAPDH. NAD(+) inhibited both GAPDH aggregation and co-aggregation with GOSPEL, a hitherto undescribed effect of the coenzyme against the consequences of oxidative stress.


Asunto(s)
Apoptosis/fisiología , Núcleo Celular/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , NAD/metabolismo , Óxido Nítrico/metabolismo , Transporte Activo de Núcleo Celular , Línea Celular , Núcleo Celular/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Humanos , NAD/genética , Óxido Nítrico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA