Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Environ Monit Assess ; 195(8): 991, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491643

RESUMEN

Wastewater treatment plants (WWTPs) represent major point sources of pollution in coastal systems, affecting benthic ecosystems. In the present study, we assessed the potential role that WWTPs have in shaping nematode communities and established baseline knowledge of free-living nematode community structures in St. Andrew Bay, Florida. Sediment samples were collected from four sites representing areas of WWTP outflow and areas with no apparent outflow, during the winter and summer. Nematode communities across sites were significantly different, and the differences were strongly associated with the distance to the nearest WWTP. While the communities were not different along transects at each site, nor across seasons, community dissimilarity across sites was high, implying strong contrasts throughout the bay system. Dominance of tolerant, opportunistic genera and Ecological Quality Status assessments suggest that the system is stressed by organic enrichment, possibly linked to the WWTPs. Our results suggest that knowledge on the life-history of dominant genera is imperative to assess the ecological quality of a benthic system, in addition to taxonomic and functional metrics. Considering the value of marine nematodes as bioindicators, more work should be done to monitor temporal variability in nematode communities in this system as future infrastructure changes alter its dynamics.


Asunto(s)
Nematodos , Purificación del Agua , Animales , Ecosistema , Monitoreo del Ambiente , Aguas Residuales
2.
PLoS Biol ; 11(10): e1001682, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24143135

RESUMEN

Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world's ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world's ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions.


Asunto(s)
Ecosistema , Fenómenos Geológicos , Actividades Humanas , Océanos y Mares , Biodiversidad , Planeta Tierra , Humanos , Agua de Mar , Factores de Tiempo
3.
Environ Pollut ; 335: 122308, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37543070

RESUMEN

Fauna across many taxa and trophic levels have been shown to consume microplastics (MPs) in experiments, providing evidence that supports field-based gut content assessments. Multiple explanations exist regarding why fauna consume MPs, one of which posits that microbial growth on MPs may facilitate faunal ingestion. However, laboratory assessments on the reasons why MPs are consumed remain limited. Here, we assessed if the presence of microbes on MPs altered marine nematode feeding behaviors across current and potential future concentrations of MPs in a local system. We used a microcosm experiment in which field-collected sediment was spiked with bacterially treated or untreated fluorescent plastic microbeads (1.0-5.0 µm) in concentrations of 102, 104, and 106 per microcosm, representing local and potential future concentrations of MPs. Ingestion by the dominant interstitial fauna was investigated after 0, 3, and 7 days using bright field microscopy. Nematodes were the only fauna across microcosms that consumed MPs, but this consumption was variable and there were no apparent trends across exposure time, bacterial treatment, or MP concentration. There were also no genera- or feeding-type-specific trends in the number of MPs consumed, though four of the top five nematode genera that consumed MPs were pollution-tolerant genera. Our study demonstrates that microbe-MP associations do not drive marine nematodes to eat MPs, especially at local field concentrations. While there were no trends across any of the nematode genera in our study, we recognize that unrealistic MP concentrations in other studies may provide alternative explanations for nematode consumption of MPs.


Asunto(s)
Nematodos , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Conducta Alimentaria , Monitoreo del Ambiente
4.
Mar Pollut Bull ; 187: 114552, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36621301

RESUMEN

Microplastic (MP) pollution is an ongoing problem in coastal systems, where wastewater treatment plants (WWTPs) deposit particles daily. This study examined MP characteristics at WWTP outflow and control sites in St. Andrew Bay in Northwestern Florida, USA. WWTP sites contained mostly polypropylene fragments (180.1 µm avg. size), while reference sites contained polypropylene fragments, and polyethylene and polyester fibers (315.3 µm avg. size). MP sizes were strongly linked to distance from the nearest WWTP, while shape and polymer compositions were more closely related to dissolved oxygen concentrations and distance to the nearest water input source. The prevalence of polypropylene fragments at WWTP sites suggests that extreme weather events during the study flushed land-based debris into the system, where it was buried in the sediments. Increased abundances of polyester and polyethylene terephthalate in the winter at WWTP sites are indicative of the role that laundering synthetic textiles plays in coastal MP pollution.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Microplásticos , Plásticos , Polímeros , Bahías , Polipropilenos , Agua , Florida , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Tereftalatos Polietilenos
5.
Science ; 379(6636): 978-981, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36893246

RESUMEN

Ocean manipulation to mitigate climate change may harm deep-sea ecosystems.


Asunto(s)
Cambio Climático , Ecosistema , Océanos y Mares
6.
Sci Total Environ ; 852: 158422, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36055491

RESUMEN

Wastewater treatment plants (WWTPs) cause approximately 25 % of microplastics (MPs) in the marine environment. While research on MPs in WWTP effluent has demonstrated that an abundance of particles enter the marine environment, little effort has gone to assessing MP abundances in coastal sediments to determine their seasonal and spatial variability. Here, we assessed MP abundances in sediments at sites of WWTP outflow and at non-polluted sites over six consecutive seasons within the St. Andrew Bay system in Northwestern Florida. We showed that MP abundances were highest at one of the WWTP sites, where they increased with increasing distance away from the input source (3.16 ± 1.59 MP/kg to 34.03 ± 11.69 MP/kg sediment dry weight). We also found that mean MP abundances were highest in the winter (12.41 ± 3.56 MPs/kg sediment dry weight) and lowest in the spring (2.17 ± 0.63 MPs/kg sediment dry weight). Therefore, while WWTPs differentially retain MPs in their removal processes, MP pollution in the St. Andrew Bay system shows seasonal dynamics like other studies. Although average MP abundance in surface sediments (0-5 cm) was higher than in subsurface sediments (5-10 cm) at all sites, this difference was not as substantial as has been found in other studies. Based on mean MP abundance in surface sediments, we estimate that there are 30 billion MPs within the surface layer of sediment in the St. Andrew Bay system, and that the particles export to the Gulf of Mexico because of seasonal flushing between the winter and spring. The distributions of MPs in the system were also likely driven by extreme weather events that occurred in the bay system during 2018 and 2020, which acts as a cautionary tale for coastal urban ecosystems in the face of sea level rise and climate change.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Estaciones del Año , Bahías , Ecosistema , Florida , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos
9.
Front Microbiol ; 5: 43, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24575084

RESUMEN

The deep sea is Earth's largest habitat but little is known about the nature of deep-sea parasitism. In contrast to a few characterized cases of bacterial and protistan parasites, the existence and biological significance of deep-sea parasitic fungi is yet to be understood. Here we report the discovery of a fungus-related parasitic microsporidium, Nematocenator marisprofundi n. gen. n. sp. that infects benthic nematodes at methane seeps on the Pacific Ocean floor. This infection is species-specific and has been temporally and spatially stable over 2 years of sampling, indicating an ecologically consistent host-parasite interaction. A high distribution of spores in the reproductive tracts of infected males and females and their absence from host nematodes' intestines suggests a sexual transmission strategy in contrast to the fecal-oral transmission of most microsporidia. N. marisprofundi targets the host's body wall muscles causing cell lysis, and in severe infection even muscle filament degradation. Phylogenetic analyses placed N. marisprofundi in a novel and basal clade not closely related to any described microsporidia clade, suggesting either that microsporidia-nematode parasitism occurred early in microsporidia evolution or that host specialization occurred late in an ancient deep-sea microsporidian lineage. Our findings reveal that methane seeps support complex ecosystems involving interkingdom interactions between bacteria, nematodes, and parasitic fungi and that microsporidia parasitism exists also in the deep-sea biosphere.

10.
Ecol Evol ; 2(2): 453-85, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22423336

RESUMEN

Because of the unique conditions that exist around the Antarctic continent, Southern Ocean (SO) ecosystems are very susceptible to the growing impact of global climate change and other anthropogenic influences. Consequently, there is an urgent need to understand how SO marine life will cope with expected future changes in the environment. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity to environmental shifts, making it difficult to predict overall community or ecosystem responses. This emphasizes the need for an improved understanding of the Antarctic benthic ecosystem response to global climate change using a multitaxon approach with consideration of different levels of biological organization. Here, we provide a synthesis of the ability of five important Antarctic benthic taxa (Foraminifera, Nematoda, Amphipoda, Isopoda, and Echinoidea) to cope with changes in the environment (temperature, pH, ice cover, ice scouring, food quantity, and quality) that are linked to climatic changes. Responses from individual to the taxon-specific community level to these drivers will vary with taxon but will include local species extinctions, invasions of warmer-water species, shifts in diversity, dominance, and trophic group composition, all with likely consequences for ecosystem functioning. Limitations in our current knowledge and understanding of climate change effects on the different levels are discussed.

11.
PLoS One ; 6(5): e20094, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21629829

RESUMEN

The Gollum Channels and Whittard Canyon (NE Atlantic) are two areas that receive high input of organic matter and phytodetritus from euphotic layers, but they are typified by different trophic and hydrodynamic conditions. Sediment biogeochemistry was analysed in conjunction with structure and diversity of the nematode community and differences were tested between study areas, water depths (700 m vs 1000 m), stations, and sediment layers. The Gollum Channels and Whittard Canyon harboured high meiofauna abundances (1054-1426 ind. 10 cm(-2)) and high nematode diversity (total of 181 genera). Next to enhanced meiofauna abundance and nematode biomass, there were signs of high levels of organic matter deposition leading to reduced sedimentary conditions, which in turn structured the nematode community. Striking in this respect was the presence of large numbers of 'chemosynthetic' Astomonema nematodes (Astomonema southwardorum, Order Monhysterida, Family Siphonolaimidae). This genus lacks a mouth, buccal cavity and pharynx and possesses a rudimentary gut containing internal, symbiotic prokaryotes which have been recognised as sulphur-oxidising bacteria. Dominance of Astomonema may indicate the presence of reduced environments in the study areas, which is partially confirmed by the local biogeochemical environment. The nematode communities were mostly affected by sediment layer differences and concomitant trophic conditions rather than other spatial gradients related to study area, water depth or station differences, pointing to small-scale heterogeneity as the main source of variation in nematode structure and function. Furthermore, the positive relation between nematode standing stocks, and quantity and quality of the organic matter was stronger when hydrodynamic disturbance was greater. Analogically, this study also suggests that structural diversity can be positively correlated with trophic conditions and that this relation is tighter when hydrodynamic disturbance is greater.


Asunto(s)
Invertebrados , Nematodos , Animales , Océano Atlántico , Biomasa , Monitoreo del Ambiente
12.
PLoS One ; 6(7): e22240, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21799799

RESUMEN

BACKGROUND: Recent climate-induced ice-shelf disintegration in the Larsen A (1995) and B (2002) areas along the Eastern Antarctic Peninsula formed a unique opportunity to assess sub-ice-shelf benthic community structure and led to the discovery of unexplored habitats, including a low-activity methane seep beneath the former Larsen B ice shelf. Since both limited particle sedimentation under previously permanent ice coverage and reduced cold-seep activity are likely to influence benthic meiofauna communities, we characterised the nematode assemblage of this low-activity cold seep and compared it with other, now seasonally ice-free, Larsen A and B stations and other Antarctic shelf areas (Weddell Sea and Drake Passage), as well as cold-seep ecosystems world-wide. PRINCIPAL FINDINGS: The nematode community at the Larsen B seep site differed significantly from other Antarctic sites in terms of dominant genera, diversity and abundance. Densities in the seep samples were high (>2000 individuals per 10 cm(2)) and showed below-surface maxima at a sediment depth of 2-3 cm in three out of four replicates. All samples were dominated by one species of the family Monhysteridae, which was identified as a Halomonhystera species that comprised between 80 and 86% of the total community. The combination of high densities, deeper density maxima and dominance of one species is shared by many cold-seep ecosystems world-wide and suggested a possible dependence upon a chemosynthetic food source. Yet stable (13)C isotopic signals (ranging between -21.97±0.86‰ and -24.85±1.89‰) were indicative of a phytoplankton-derived food source. CONCLUSION: The recent ice-shelf collapse and enhanced food input from surface phytoplankton blooms were responsible for the shift from oligotrophic pre-collapse conditions to a phytodetritus-based community with high densities and low diversity. The parthenogenetic reproduction of the highly dominant Halomonhystera species is rather unusual for marine nematodes and may be responsible for the successful colonisation by this single species.


Asunto(s)
Agua Subterránea , Nematodos , Animales , Regiones Antárticas , Biodiversidad , Hielo , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA