Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 34(11): 3399-407, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16822860

RESUMEN

TFIIIC is a RNA polymerase (pol) III-specific DNA-binding factor that is required for transcription of tRNA and 5S rRNA genes. Active human TFIIIC consists of five subunits. However, an inactive form has also been isolated that lacks one of the five subunits, called TFIIIC110. A model was proposed in which pol III transcription might be regulated by the specific induction of TFIIIC110, allowing formation of active TFIIIC from the inactive form. We have tested this model by transient transfection of HeLa and HEK293 cells with a vector expressing TFIIIC110. We have also made stably transfected HeLa cell lines that carry a doxycycline-inducible version of the cDNA for TFIIIC110. We show that the induced TFIIIC110 enters the nucleus, binds other TFIIIC subunits and is recruited to tRNA and 5S rRNA genes in vivo. However, little or no effect is seen on the expression of pol III transcripts. The data argue against the model that pol III transcription can be effectively modulated through the specific induction of TFIIIC110.


Asunto(s)
Regulación de la Expresión Génica , Modelos Genéticos , Subunidades de Proteína/biosíntesis , ARN Polimerasa III/metabolismo , Factores de Transcripción TFIII/metabolismo , Línea Celular , Células HeLa , Humanos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Ribosómico 5S/biosíntesis , ARN de Transferencia/biosíntesis , Factor de Transcripción TFIIIB/metabolismo , Transcripción Genética , Transfección
2.
Nucleic Acids Res ; 34(1): 286-94, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16407335

RESUMEN

RNA polymerase (pol) III transcription decreases when primary cultures of rat neonatal cardiomyocytes are exposed to low oxygen tension. Previous studies in fibroblasts have shown that the pol III-specific transcription factor IIIB (TFIIIB) is bound and regulated by the proto-oncogene product c-Myc, the mitogen-activated protein kinase ERK and the retinoblastoma tumour suppressor protein, RB. The principal function of TFIIIB is to recruit pol III to its cognate gene template, an activity that is known to be inhibited by RB and stimulated by ERK. We demonstrate by chromatin immunoprecipitation (ChIP) that c-Myc also stimulates pol III recruitment by TFIIIB. However, hypoxic conditions cause TFIIIB dissociation from c-Myc and ERK, at the same time as increasing its interaction with RB. Consistent with this, ChIP assays indicate that the occupancy of tRNA genes by pol III is significantly reduced, whereas promoter binding by TFIIIB is undiminished. The data suggest that hypoxia can inhibit pol III transcription by altering the interactions between TFIIIB and its regulators and thus compromising its ability to recruit the polymerase. These effects are independent of cell cycle changes.


Asunto(s)
Regulación de la Expresión Génica , Miocitos Cardíacos/metabolismo , ARN Polimerasa III/antagonistas & inhibidores , ARN de Transferencia/genética , Transcripción Genética , Animales , Hipoxia de la Célula , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Polimerasa III/metabolismo , Ratas , Ratas Sprague-Dawley , Proteína de Retinoblastoma/metabolismo
3.
Biochem Soc Symp ; (73): 141-54, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16626295

RESUMEN

The proto-oncogene product c-Myc can induce cell growth and proliferation. It regulates a large number of RNA polymerase II-transcribed genes, many of which encode ribosomal proteins, translation factors and other components of the biosynthetic apparatus. We have found that c-Myc can also activate transcription by RNA polymerases I and III, thereby stimulating production of rRNA and tRNA. As such, c-Myc may possess the unprecedented capacity to induce expression of all ribosomal components. This may explain its potent ability to drive cell growth, which depends on the accumulation of ribosomes. The activation of RNA polymerase II transcription by c-Myc is often inefficient, but its induction of rRNA and tRNA genes can be very strong in comparison. We will describe what is known about the mechanisms used by c-Myc to activate transcription by RNA polymerases I and II.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Activación Transcripcional , Animales , ARN Polimerasas Dirigidas por ADN/genética , Humanos , Ratones , Modelos Biológicos , Proto-Oncogenes Mas , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , ARN Ribosómico/genética , ARN de Transferencia/genética
4.
EMBO J ; 25(7): 1522-33, 2006 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-16541106

RESUMEN

The cell division-independent growth of terminally differentiated cardiomyocytes is commonly associated with cardiovascular disease. We demonstrate that it is accompanied by a substantial rise in transcription by RNA polymerase (pol) III, which produces essential components of the biosynthetic apparatus, including 5S rRNA and tRNAs. This increase in transcription is achieved by changes in both the activity and level of the essential pol III-specific transcription factor TFIIIB. Erk and c-Myc, which directly activate TFIIIB in proliferating fibroblasts, also induce pol III transcription in growing cardiomyocytes. Furthermore, hypertrophic stimulation increases expression of the essential TFIIIB subunit Brf1, an effect not seen when fibroblasts proliferate. Erk mediates this induction of Brf1 expression and therefore contributes in at least two ways to pol III transcriptional activation during hypertrophy. Increased production of tRNA and 5S rRNA will contribute to the enhanced translational capacity required to sustain hypertrophic growth.


Asunto(s)
Cardiomegalia/metabolismo , Aumento de la Célula , Miocitos Cardíacos/metabolismo , ARN Polimerasa III/metabolismo , Transcripción Genética , Animales , Cardiomegalia/patología , Células Cultivadas , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones , Ratones Transgénicos , Miocitos Cardíacos/patología , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Polimerasa III/genética , ARN Ribosómico 5S/metabolismo , ARN de Transferencia/metabolismo , Ratas , Factor de Transcripción TFIIIB/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA