Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36233028

RESUMEN

Changes in the gut ecosystem, including the microbiome and the metabolome, and the host immune system after fructo-oligosaccharide (FOS) supplementation were evaluated. The supplementation of FOS showed large inter-individual variability in the absolute numbers of fecal bacteria and an increase in Bifidobacterium. The fecal metabolome analysis revealed individual variability in fructose utilization in response to FOS supplementation. In addition, immunoglobulin A(IgA) tended to increase upon FOS intake, and peripheral blood monocytes significantly decreased upon FOS intake and kept decreasing in the post-FOS phase. Further analysis using a metagenomic approach showed that the differences could be at least in part due to the differences in gene expressions of enzymes that are involved in the fructose metabolism pathway. While the study showed individual differences in the expected health benefits of FOS supplementation, the accumulation of "personalized" knowledge of the gut ecosystem with its genetic expression may enable effective instructions on prebiotic consumption to optimize health benefits for individuals in the future.


Asunto(s)
Microbiota , Oligosacáridos , Fructosa/farmacología , Humanos , Inmunoglobulina A/metabolismo , Oligosacáridos/metabolismo , Oligosacáridos/farmacología , Prebióticos
2.
NPJ Microgravity ; 5: 16, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31312718

RESUMEN

Japan Aerospace Exploration Agency (JAXA) has developed mouse habitat cage units equipped with an artificial gravity-producing centrifuge, called the Multiple Artificial-gravity Research System (MARS), that enables single housing of a mouse under artificial gravity (AG) in orbit. This is a report on a hardware evaluation. The MARS underwent improvement in water leakage under microgravity (MG), and was used in the second JAXA mouse mission to evaluate the effect of AG and diet on mouse biological system simultaneously. Twelve mice were divided into four groups of three, with each group fed a diet either with or without fructo-oligosaccharide and housed singly either at 1 g AG or MG for 30 days on the International Space Station, then safely returned to the Earth. Body weight tended to increase in AG mice and decrease in MG mice after spaceflight, but these differences were not significant. This indicates that the improved MARS may be useful in evaluating AG and dietary intervention for space flown mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA