Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37246520

RESUMEN

Movement of the vertebrate body is supported by the connection of muscle, tendon and bone. Each skeletal muscle in the vertebrate body has a unique shape and attachment site; however, the mechanism that ensures reproducible muscle patterning is incompletely understood. In this study, we conducted targeted cell ablation using scleraxis (Scx)-Cre to examine the role of Scx-lineage cells in muscle morphogenesis and attachment in mouse embryos. We found that muscle bundle shapes and attachment sites were significantly altered in embryos with Scx-lineage cell ablation. Muscles in the forelimb showed impaired bundle separation and limb girdle muscles distally dislocated from their insertion sites. Scx-lineage cells were required for post-fusion myofiber morphology, but not for the initial segregation of myoblasts in the limb bud. Furthermore, muscles could change their attachment site, even after formation of the insertion. Lineage tracing suggested that the muscle patterning defect was primarily attributed to the reduction of tendon/ligament cells. Our study demonstrates an essential role of Scx-lineage cells in the reproducibility of skeletal muscle attachment, in turn revealing a previously unappreciated tissue-tissue interaction in musculoskeletal morphogenesis.


Asunto(s)
Huesos , Tendones , Ratones , Animales , Reproducibilidad de los Resultados , Miembro Anterior , Músculo Esquelético , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
2.
Cell ; 147(4): 759-72, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22078877

RESUMEN

Cancer stem cells (CSCs) are proposed to drive tumor initiation and progression. Yet, our understanding of the cellular and molecular mechanisms that underlie CSC properties is limited. Here we show that the activity of TAZ, a transducer of the Hippo pathway, is required to sustain self-renewal and tumor-initiation capacities in breast CSCs. TAZ protein levels and activity are elevated in prospective CSCs and in poorly differentiated human tumors and have prognostic value. Gain of TAZ endows self-renewal capacity to non-CSCs. In epithelial cells, TAZ forms a complex with the cell-polarity determinant Scribble, and loss of Scribble--or induction of the epithelial-mesenchymal transition (EMT)--disrupts the inhibitory association of TAZ with the core Hippo kinases MST and LATS. This study links the CSC concept to the Hippo pathway in breast cancer and reveals a mechanistic basis of the control of Hippo kinases by cell polarity.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Células Madre Neoplásicas/patología , Transducción de Señal , Factores de Transcripción/metabolismo , Aciltransferasas , Polaridad Celular , Transición Epitelial-Mesenquimal , Femenino , Humanos , Proteínas de la Membrana/metabolismo , Metástasis de la Neoplasia/patología , Células Madre Neoplásicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo
3.
FASEB J ; 37(1): e22692, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515178

RESUMEN

The skeletal muscle myosin heavy chain (MyHC) is a fundamental component of the sarcomere structure and muscle contraction. Two of the three adult fast MyHCs, MyHC-IIx and MyHC-IIb, are encoded by Myh1 and Myh4, respectively. However, skeletal muscle disorders have not yet been linked to these genes in humans. MyHC-IIb is barely detectable in human skeletal muscles. Thus, to characterize the molecular function of skeletal muscle MyHCs in humans, investigation of the effect of simultaneous loss of MyHC-IIb and other MyHCs on skeletal muscle in mice is essential. Here, we generated double knockout (dKO) mice with simultaneous loss of adult fast MyHCs by introducing nonsense frameshift mutations into the Myh1 and Myh4 genes. The dKO mice appeared normal after birth and until 2 weeks of age but showed severe skeletal muscle hypoplasia after 2 weeks. In 3-week-old dKO mice, increased expression of other skeletal muscle MyHCs, such as MyHC-I, MyHC-IIa, MyHC-neo, and MyHC-emb, was observed. However, these expressions were not sufficient to compensate for the loss of MyHC-IIb and MyHC-IIx. Moreover, the aberrant sarcomere structure with altered expression of sarcomere components was observed in dKO mice. Our findings imply that the simultaneous loss of MyHC-IIb and MyHC-IIx is substantially detrimental to postnatal skeletal muscle function and will contribute to elucidating the molecular mechanisms of skeletal muscle wasting disorders caused by the loss of skeletal muscle MyHCs.


Asunto(s)
Cadenas Pesadas de Miosina , Miosinas del Músculo Esquelético , Animales , Ratones , Músculo Esquelético/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Isoformas de Proteínas/metabolismo , Sarcómeros/metabolismo , Miosinas del Músculo Esquelético/análisis , Miosinas del Músculo Esquelético/metabolismo
4.
Cell ; 136(1): 123-35, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19135894

RESUMEN

The assembly of the Smad complex is critical for TGFbeta signaling, yet the mechanisms that inactivate or empower nuclear Smad complexes are less understood. By means of siRNA screen we identified FAM (USP9x), a deubiquitinase acting as essential and evolutionarily conserved component in TGFbeta and bone morphogenetic protein signaling. Smad4 is monoubiquitinated in lysine 519 in vivo, a modification that inhibits Smad4 by impeding association with phospho-Smad2. FAM reverts this negative modification, re-empowering Smad4 function. FAM opposes the activity of Ectodermin/Tif1gamma (Ecto), a nuclear factor for which we now clarify a prominent role as Smad4 monoubiquitin ligase. Our study points to Smad4 monoubiquitination and deubiquitination as a way for cells to set their TGFbeta responsiveness: loss of FAM disables Smad4-dependent responses in several model systems, with Ecto being epistatic to FAM. This defines a regulative ubiquitination step controlling Smads that is parallel to those impinging on R-Smad phosphorylation.


Asunto(s)
Proteína Smad4/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Línea Celular Tumoral , Embrión no Mamífero/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitinación , Xenopus
5.
Dev Growth Differ ; 65(1): 48-55, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36517457

RESUMEN

Myosin heavy chains (MyHCs), which are encoded by myosin heavy chain (Myh) genes, are the most abundant proteins in myofiber. Among the 11 sarcomeric Myh isoform genes in the mammalian genome, seven are mainly expressed in skeletal muscle. Myh genes/MyHC proteins share a common role as force producing units with highly conserved sequences, but have distinct spatio-temporal expression patterns. As such, the expression patterns of Myh genes/MyHC proteins are considered as molecular signatures of specific fiber types or the regenerative status of mammalian skeletal muscles. Immunohistochemistry is widely used for identifying MyHC expression patterns; however, this method is costly and is not ideal for whole-mount samples, such as embryos. In situ hybridization (ISH) is another versatile method for the analysis of gene expression, but is not commonly applied for Myh genes, partly because of the highly homologous sequences of Myh genes. Here we demonstrate that an ISH analysis with the untranslated region (UTR) sequence of Myh genes is cost-effective and specific method for analyzing the Myh gene expression in whole-mount samples. Digoxigenin (DIG)-labeled antisense probes for UTR sequences, but not for protein coding sequences, specifically detected the expression patterns of respective Myh isoform genes in both embryo and adult skeletal muscle tissues. UTR probes also revealed the isoform gene-specific polarized localization of Myh mRNAs in embryonic myofibers, which implied a novel mRNA distribution mechanism. Our data suggested that the DIG-labeled UTR probe is a cost-effective and versatile method to specifically detect skeletal muscle Myh genes in a whole-mount analysis.


Asunto(s)
Cadenas Pesadas de Miosina , ARN , Animales , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Sondas ARN/metabolismo , Digoxigenina/metabolismo , Regiones no Traducidas , Músculo Esquelético/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perfilación de la Expresión Génica , Hibridación in Situ , Mamíferos/metabolismo
6.
Nat Rev Mol Cell Biol ; 11(4): 252-63, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20216554

RESUMEN

MicroRNAs (miRNAs) are integral elements in the post-transcriptional control of gene expression. After the identification of hundreds of miRNAs, the challenge is now to understand their specific biological function. Signalling pathways are ideal candidates for miRNA-mediated regulation owing to the sharp dose-sensitive nature of their effects. Indeed, emerging evidence suggests that miRNAs affect the responsiveness of cells to signalling molecules such as transforming growth factor-beta, WNT, Notch and epidermal growth factor. As such, miRNAs serve as nodes of signalling networks that ensure homeostasis and regulate cancer, metastasis, fibrosis and stem cell biology.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/fisiología , Transducción de Señal , Animales , Humanos
7.
Int J Mol Sci ; 21(4)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32070068

RESUMEN

Sox9 is a master transcription factor for chondrogenesis, which is essential for chondrocyte proliferation, differentiation, and maintenance. Sox9 activity is regulated by multiple layers, including post-translational modifications, such as SUMOylation. A detection method for visualizing the SUMOylation in live cells is required to fully understand the role of Sox9 SUMOylation. In this study, we generated a quantitative reporter for Sox9 SUMOylation that is based on the NanoBiT system. The simultaneous expression of Sox9 and SUMO1 constructs that are conjugated with NanoBiT fragments in HEK293T cells induced luciferase activity in SUMOylation target residue of Sox9-dependent manner. Furthermore, the reporter signal could be detected from both cell lysates and live cells. The signal level of our reporter responded to the co-expression of SUMOylation or deSUMOylation enzymes by several fold, showing dynamic potency of the reporter. The reporter was active in multiple cell types, including ATDC5 cells, which have chondrogenic potential. Finally, using this reporter, we revealed a extracellular signal conditions that can increase the amount of SUMOylated Sox9. In summary, we generated a novel reporter that was capable of quantitatively visualizing the Sox9-SUMOylation level in live cells. This reporter will be useful for understanding the dynamism of Sox9 regulation during chondrogenesis.


Asunto(s)
Condrogénesis/genética , Factor de Transcripción SOX9/genética , Proteína SUMO-1/genética , Sumoilación/genética , Animales , Diferenciación Celular/genética , Condrocitos/metabolismo , Regulación de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células HEK293 , Humanos , Regiones Promotoras Genéticas/genética
8.
Int J Mol Sci ; 20(18)2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31540031

RESUMEN

Multiple genes, whose functions or expression are overlapping, compensate for the loss of one gene. A gene cluster in the mouse genome encodes five seminal vesicle proteins (SVS2, SVS3, SVS4, SVS5, and SVS6). These proteins are produced by male rodents and function in formation of the copulatory plug following mating. SVS2 plays an essential role in the successful internal fertilization by protecting the sperm membrane against a uterine immune attack. We hypothesized that the four remaining seminal vesicle proteins (SVPs) of this gene cluster may partially/completely compensate for the deficiency of SVS2. For confirming our hypothesis, we generated mice lacking the entire SVP-encoding gene cluster and compared their fecundity with Svs2-deficient (Svs2-/-) mice; that is, mice deficient in Svs2 alone. A single loxP site remained after the deletion of the Svs2 gene. Therefore, we inserted another loxP site by combining the CRISPR/Cas9 system with single-stranded oligodeoxynucleotides (ssODN). Male mice lacking the entire SVP-encoding gene cluster (Svs2-6-/- mice) and thereby all five SVP proteins, generated by the deletion of 100kbp genomic DNA, showed low fecundity. However, the fecundity level was comparable with that from Svs2-/- male mice. Our results demonstrate that SVS3, SVS4, SVS5, and SVS6 do not function in the protection of sperm against a uterine immune attack in the absence of SVS2. Thus, Svs2 is the critical gene in the SVP gene cluster.


Asunto(s)
Fertilidad/genética , Proteínas de Secreción de la Vesícula Seminal/genética , Animales , Femenino , Fertilidad/inmunología , Masculino , Ratones , Familia de Multigenes , Reproducción/genética , Proteínas de Secreción de la Vesícula Seminal/metabolismo , Proteínas de Secreción de la Vesícula Seminal/fisiología , Eliminación de Secuencia/genética , Espermatozoides/metabolismo , Útero/inmunología , Útero/metabolismo
9.
Proc Natl Acad Sci U S A ; 109(38): 15354-9, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22949641

RESUMEN

The Spemann organizer stands out from other signaling centers of the embryo because of its broad patterning effects. It defines development along the anteroposterior and dorsoventral axes of the vertebrate body, mainly by secreting antagonists of growth factors. Qualitative models proposed more than a decade ago explain the organizer's region-specific inductions (i.e., head and trunk) as the result of different combinations of antagonists. For example, head induction is mediated by extracellular inhibition of Wnt, BMP, and Nodal ligands. However, little is known about how the levels of these antagonists become harmonized with those of their targets and with the factors initially responsible for germ layers and organizer formation, including Nodal itself. Here we show that key ingredients of the head-organizer development, namely Nodal ligands, Nodal antagonists, and ADMP ligands reciprocally adjust each other's strength and range of activity by a self-regulating network of interlocked feedback and feedforward loops. A key element in this cross-talk is the limited availability of ACVR2a, for which Nodal and ADMP must compete. By trapping Nodal extracellularly, the Nodal antagonists Cerberus and Lefty are permissive for ADMP activity. The system self-regulates because ADMP/ACVR2a/Smad1 signaling in turn represses the expression of the Nodal antagonists, reestablishing the equilibrium. In sum, this work reveals an unprecedented set of interactions operating within the organizer that is critical for embryonic patterning.


Asunto(s)
Organizadores Embrionarios/metabolismo , Receptores de Activinas Tipo I/metabolismo , Receptores de Activinas Tipo II/metabolismo , Animales , Tipificación del Cuerpo , Proteínas Morfogenéticas Óseas/metabolismo , Línea Celular , Pollos , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Ligandos , Modelos Biológicos , Transducción de Señal , Factores de Tiempo , Transfección , Xenopus laevis/metabolismo
10.
Biochem Biophys Rep ; 38: 101733, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38799114

RESUMEN

RUNX2 is a transcription factor crucial for bone formation. Mutant mice with varying levels of Runx2 expression display dosage-dependent skeletal abnormalities, underscoring the importance of Runx2 dosage control in skeletal formation. RUNX2 activity is regulated by several molecular mechanisms, including epigenetic modification such as DNA methylation. In this study, we investigated whether targeted repressive epigenome editing including hypermethylation to the Runx2-DMR/CpG island shore could influence Runx2 expression using Cas9-based epigenome-editing tools. Through the transient introduction of CRISPRoff-v2.1 and gRNAs targeting Runx2-DMR into MC3T3-E1 cells, we successfully induced hypermethylation of the region and concurrently reduced Runx2 expression during osteoblast differentiation. Although the epigenome editing of Runx2-DMR did not impact the expression of RUNX2 downstream target genes, these results indicate a causal relationship between the epigenetic status of the Runx2-DMR and Runx2 transcription. Additionally, we observed that hypermethylation of the Runx2-DMR persisted for at least 24 days under growth conditions but decreased during osteogenic differentiation, highlighting an endogenous DNA demethylation activity targeting the Runx2-DMR during the differentiation process. In summary, our study underscore the usefulness of the epigenome editing technology to evaluate the function of endogenous genetic elements and revealed that the Runx2-DMR methylation is actively regulated during osteoblast differentiation, subsequently could influence Runx2 expression.

11.
Nature ; 449(7159): 183-8, 2007 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-17728715

RESUMEN

MicroRNAs are crucial modulators of gene expression, yet their involvement as effectors of growth factor signalling is largely unknown. Ligands of the transforming growth factor-beta superfamily are essential for development and adult tissue homeostasis. In early Xenopus embryos, signalling by the transforming growth factor-beta ligand Nodal is crucial for the dorsal induction of the Spemann's organizer. Here we report that Xenopus laevis microRNAs miR-15 and miR-16 restrict the size of the organizer by targeting the Nodal type II receptor Acvr2a. Endogenous miR-15 and miR-16 are ventrally enriched as they are negatively regulated by the dorsal Wnt/beta-catenin pathway. These findings exemplify the relevance of microRNAs as regulators of early embryonic patterning acting at the crossroads of fundamental signalling cascades.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Xenopus laevis/embriología , Xenopus laevis/genética , Receptores de Activinas Tipo II/biosíntesis , Receptores de Activinas Tipo II/genética , Activinas/metabolismo , Animales , Tipificación del Cuerpo , MicroARNs/genética , Proteína Nodal , Organizadores Embrionarios/embriología , Organizadores Embrionarios/metabolismo , Proteínas Wnt/metabolismo , Xenopus laevis/metabolismo , beta Catenina/metabolismo
12.
Biochem Biophys Rep ; 27: 101047, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34189280

RESUMEN

Notochord is an embryonic midline structure that serves as mechanical support for axis elongation and the signaling center for the surrounding tissues. Precursors of notochord are initially induced in the dorsal most mesoderm region in gastrulating embryo and separate from the surrounding mesoderm/endoderm tissue to form an elongated rod-like structure, suggesting that cell adhesion molecules may play an important role in this step. In Xenopus embryo, axial protocadherin (AXPC), an orthologue of mammalian Protocadherin-1 (PCDH1), is indispensable for the assembly and separation from the surrounding tissue of the notochord cells. However, the role of PCDH1 in mammalian notochord remains unknown. We herein report that PCDH1 is expressed in the notochord of mouse embryo and that PCDH1-deficient mice form notochord normally. First, we examined the temporal expression pattern of pcdh1 and found that pcdh1 mRNA was expressed from embryonic day (E) 7.5, prior to the stage when notochord cells detach from the surrounding endoderm tissue. Second, we found that PCDH1 protein is expressed in the notochord of mouse embryos in addition to the previously reported expression in endothelial cells. To further investigate the role of PCDH1 in embryonic development, we generated PCDH1-deficient mice using the CRISPR-Cas9 system. In PCDH1-deficient embryos, notochord formation and separation from the surrounding tissue were normal. Structure and marker gene expression of notochord were also unaffected by loss of PCDH1. Major vascular patterns in PCDH1-deficient embryo were essentially normal. These results suggest that PCDH1 is dispensable for notochord formation, including the tissue separation process, in mammalian embryos. We successfully identified the evolutionary conserved expression of PCDH1 in notochord, but its function may differ among species.

13.
Biochem Biophys Res Commun ; 400(2): 200-6, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20709025

RESUMEN

Chromatin fluidity, which is one of the indicators of higher-order structures in chromatin, is associated with cell differentiation. However, little is known about the relationships between chromatin fluidity and cell differentiation status in embryonic development. We established an in vitro reconstitution system that uses isolated nuclei and cytoplasmic extracts of Xenopus embryos and a fluorescence recovery after photobleaching assay to measure the fluidities of heterochromatin protein 1 (HP1) and histone H1 during development. The HP1 and H1 fluidities of nuclei isolated from the tailbuds of early tadpole stage (stage 32) embryos in the cytoplasmic extracts of eggs and of late blastula stage (stage 9) embryos were higher than those in the cytoplasmic extracts of mid-neurula stage (stage 15) embryos. The HP1 fluidities of nuclei isolated from animal cap cells of early gastrula stage (stage 10) embryos and from the neural plates of neural stage (stage 20) embryos were higher than those isolated from the tailbuds of stage 32 embryos in egg extracts, whereas the HP1 fluidities of these nuclei were the same in the cytoplasmic extracts of stage 15 embryos. These results suggest that chromatin fluidity is dependent upon both cytoplasmic and nuclear factors and decreases during development.


Asunto(s)
Cromatina/metabolismo , Xenopus laevis/embriología , Animales , Núcleo Celular/metabolismo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Citoplasma/metabolismo , Femenino , Fotoblanqueo , Xenopus laevis/metabolismo
14.
Elife ; 92020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32479258

RESUMEN

The body plan along the anteroposterior axis and regional identities are specified by the spatiotemporal expression of Hox genes. Multistep controls are required for their unique expression patterns; however, the molecular mechanisms behind the tight control of Hox genes are not fully understood. In this study, we demonstrated that the Lin28a/let-7 pathway is critical for axial elongation. Lin28a-/- mice exhibited axial shortening with mild skeletal transformations of vertebrae, which were consistent with results in mice with tail bud-specific mutants of Lin28a. The accumulation of let-7 in Lin28a-/- mice resulted in the reduction of PRC1 occupancy at the Hox cluster loci by targeting Cbx2. Consistently, Lin28a loss in embryonic stem-like cells led to aberrant induction of posterior Hox genes, which was rescued by the knockdown of let-7. These results suggest that the Lin28/let-7 pathway is involved in the modulation of the 'Hox code' via Polycomb regulation during axial patterning.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , MicroARNs , Proteínas del Grupo Polycomb , Proteínas de Unión al ARN , Animales , Células HEK293 , Humanos , Ratones , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Columna Vertebral/crecimiento & desarrollo
15.
Dev Biol ; 313(2): 816-28, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18035347

RESUMEN

T-box factor, Tbx6, is a prerequisite for somite segmentation in vertebrates. We recently identified a negative regulator of Tbx6, Bowline, which represses the expression of genes involved in somite segmentation by suppressing the transcriptional activity of Tbx6. According to this function, bowline gene expression is restricted to the most anterior presomitic mesoderm where the somite segmentation program terminates, although it remains unclear how bowline expression is activated. To address this, we investigated the cis-regulatory region of bowline. Measuring luciferase activity driven by the bowline promoter, we found that Tbx6, Thylacine1, and E47 synergistically activate bowline expression in vitro. We also found that Tbx6, Thylacine1, and E47 are spatiotemporally sufficient to induce bowline expression in Xenopus somitogenesis. Our findings indicated that besides being a negative regulator of Tbx6, bowline itself is also regulated by Tbx6, suggesting the negative feedback loop of Tbx6-Bowline in the termination step of somite segmentation.


Asunto(s)
Somitos/fisiología , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción TCF/metabolismo , Transactivadores/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Animales Modificados Genéticamente , Células COS , Línea Celular , Chlorocebus aethiops , Genes Reporteros , Humanos , Hibridación in Situ , Riñón/citología , Leupeptinas/farmacología , Luciferasas de Renilla/análisis , Luciferasas de Renilla/metabolismo , Ratones , Modelos Biológicos , Células 3T3 NIH , Pruebas de Precipitina , Proteína 1 Similar al Factor de Transcripción 7 , Transfección , Transgenes
16.
Nat Commun ; 10(1): 2429, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31160553

RESUMEN

The WW domain-containing protein 2 (Wwp2) gene, the host gene of miR-140, codes for the Wwp2 protein, which is an HECT-type E3 ubiquitin ligases abundantly expressed in articular cartilage. However, its function remains unclear. Here, we show that mice lacking Wwp2 and mice in which the Wwp2 E3 enzyme is inactivated (Wwp2-C838A) exhibit aggravated spontaneous and surgically induced osteoarthritis (OA). Consistent with this phenotype, WWP2 expression level is downregulated in human OA cartilage. We also identify Runx2 as a Wwp2 substrate and Adamts5 as a target gene, as similar as miR-140. Analysis of Wwp2-C838A mice shows that loss of Wwp2 E3 ligase activity results in upregulation of Runx2-Adamts5 signaling in articular cartilage. Furthermore, in vitro transcribed Wwp2 mRNA injection into mouse joints reduces the severity of experimental OA. We propose that Wwp2 has a role in protecting cartilage from OA by suppressing Runx2-induced Adamts5 via Runx2 poly-ubiquitination and degradation.


Asunto(s)
Proteína ADAMTS5/metabolismo , Cartílago Articular/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteoartritis/genética , Ubiquitina-Proteína Ligasas/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Artritis Experimental/genética , Artritis Experimental/metabolismo , Cartílago Articular/diagnóstico por imagen , Modelos Animales de Enfermedad , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Meniscos Tibiales/cirugía , Ratones , Ratones Noqueados , Persona de Mediana Edad , Osteoartritis/metabolismo , ARN Mensajero/farmacología , Transducción de Señal , Cráneo/diagnóstico por imagen , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Microtomografía por Rayos X , Adulto Joven
17.
Nat Protoc ; 14(8): 2452-2482, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31341289

RESUMEN

Methods to create genetically engineered mice involve three major steps: harvesting embryos from one set of females, microinjection of reagents into embryos ex vivo and their surgical transfer to another set of females. Although tedious, these methods have been used for more than three decades to create mouse models. We recently developed a method named GONAD (genome editing via oviductal nucleic acids delivery), which bypasses these steps. GONAD involves injection of CRISPR components (Cas9 mRNA and guide RNA (gRNA)) into the oviducts of pregnant females 1.5 d post conception, followed by in vivo electroporation to deliver the components into the zygotes in situ. Using GONAD, we demonstrated that target genes can be disrupted and analyzed at different stages of mouse embryonic development. Subsequently, we developed improved GONAD (i-GONAD) by delivering CRISPR ribonucleoproteins (RNPs; Cas9 protein or Cpf1 protein and gRNA) into day-0.7 pregnant mice, which made it suitable for routine generation of knockout and large-deletion mouse models. i-GONAD can also generate knock-in models containing up to 1-kb inserts when single-stranded DNA (ssDNA) repair templates are supplied. i-GONAD offers other advantages: it does not require vasectomized males and pseudo-pregnant females, the females used for i-GONAD are not sacrificed and can be used for other experiments, it can be easily adopted in laboratories lacking sophisticated microinjection equipment, and can be implemented by researchers skilled in small-animal surgery but lacking embryo-handling skills. Here, we provide a step-by-step protocol for establishing the i-GONAD method. The protocol takes ∼6 weeks to generate the founder mice.


Asunto(s)
Sistemas CRISPR-Cas/genética , Electroporación/métodos , Edición Génica/métodos , Animales , Femenino , Masculino , Ratones , Microinyecciones , Oviductos/fisiología , Embarazo , ARN Guía de Kinetoplastida/administración & dosificación , ARN Guía de Kinetoplastida/genética , ARN Mensajero/administración & dosificación , ARN Mensajero/genética
18.
Sci Rep ; 9(1): 12560, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31467356

RESUMEN

SRY (sex-determining region Y)-box 9 (SOX9) is a transcription factor regulating both chondrogenesis and sex determination. Among vertebrates, SOX9's functions in chondrogenesis are well conserved, while they vary in sex determination. To investigate the conservation of SOX9's regulatory functions in chondrogenesis and gonad development among species, we performed chromatin immunoprecipitation sequencing (ChIP-seq) using developing limb buds and male gonads from embryos of two vertebrates, mouse and chicken. In both mouse and chicken, SOX9 bound to intronic and distal regions of genes more frequently in limb buds than in male gonads, while SOX9 bound to the proximal upstream regions of genes more frequently in male gonads than in limb buds. In both species, SOX palindromic repeats were identified more frequently in SOX9 binding regions in limb bud genes compared with those in male gonad genes. The conservation of SOX9 binding regions was significantly higher in limb bud genes. In addition, we combined RNA expression analysis (RNA sequencing) with the ChIP-seq results at the same stage in developing chondrocytes and Sertoli cells and determined SOX9 target genes in these cells of the two species and disclosed that SOX9 targets showed high similarity of targets in chondrocytes, but not in Sertoli cells.


Asunto(s)
Condrocitos/metabolismo , Secuencia Conservada , Factor de Transcripción SOX9/metabolismo , Células de Sertoli/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Pollos , Condrocitos/citología , Masculino , Ratones , Unión Proteica , Células de Sertoli/citología , Especificidad por Sustrato
19.
J Bone Miner Res ; 32(9): 1773-1782, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28621492

RESUMEN

Tendons and ligaments provide connections between muscle and bone or bone and bone to enable locomotion. Damage to tendons and ligaments caused by acute or chronic injury or associated with aging and arthritis is a prevalent cause of disability. Improvements in approaches for the treatment of these conditions depend on a better understanding of tendon and ligament development, cell biology, and pathophysiology. This review focuses on recent advances in the discovery of transcription factors that control ligament and tendon cell differentiation, how cell and extracellular matrix homeostasis are altered in disease, and how this new insight can lead to novel therapeutic approaches. © 2017 American Society for Bone and Mineral Research.


Asunto(s)
Envejecimiento/metabolismo , Artritis/metabolismo , Ligamentos/metabolismo , Traumatismos de los Tendones/metabolismo , Tendones/metabolismo , Envejecimiento/patología , Animales , Artritis/patología , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Ligamentos/patología , Traumatismos de los Tendones/patología , Tendones/patología , Factores de Transcripción/metabolismo
20.
Biochem Biophys Rep ; 9: 238-244, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28956011

RESUMEN

DM domain transcription factors play important roles in sexual development in a wide variety of species from invertebrate to humans. Among seven mammalian family members of DM domain transcription factors, DMRT1 has been studied in mouse and human for its conserved role in male gonadal identity. Chromosomal deletion of 9p24.3, the region in which DMRT1 is located, is associated with 46,XY gonadal dysgenesis. Dmrt1 knockout (KO) mice also showed male-to-female gonadal reprogramming. However, the phenotype of Dmrt1 KO mouse appears only after birth while 46,XY gonadal dysgenesis occurs during the developmental phase, and the cause behind this difference remained unknown. We hypothesized that in human the function of other DMRT genes clustered with DMRT1, namely DMRT3, might also be impaired by the chromosomal deletion, which leads to the gonadal dysgenesis phenotype. Thus, simultaneous loss of multiple DM domain genes in mice could have a more severe impact on gonadal development. To address this issue, we generated double KO mice for Dmrt1 and Dmrt3 via the CRISPR/Cas9 system. Comparing adult and neonatal testes of single and double KO mice, we found that loss of Dmrt1 or Dmrt3, or both, does not have apparent effect on male gonadal formation during embryonic development. Our study demonstrated that the discrepancy between human with 9p24.3 deletion and Dmrt1 KO mouse could not be explained by the simultaneous loss of Dmrt3 gene. CRISPR/Cas9 is a versatile and straightforward approach to elucidate the questions that were otherwise difficult to address with conventional methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA