Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuroimage ; 292: 120617, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38636639

RESUMEN

A primary challenge to the data-driven analysis is the balance between poor generalizability of population-based research and characterizing more subject-, study- and population-specific variability. We previously introduced a fully automated spatially constrained independent component analysis (ICA) framework called NeuroMark and its functional MRI (fMRI) template. NeuroMark has been successfully applied in numerous studies, identifying brain markers reproducible across datasets and disorders. The first NeuroMark template was constructed based on young adult cohorts. We recently expanded on this initiative by creating a standardized normative multi-spatial-scale functional template using over 100,000 subjects, aiming to improve generalizability and comparability across studies involving diverse cohorts. While a unified template across the lifespan is desirable, a comprehensive investigation of the similarities and differences between components from different age populations might help systematically transform our understanding of the human brain by revealing the most well-replicated and variable network features throughout the lifespan. In this work, we introduced two significant expansions of NeuroMark templates first by generating replicable fMRI templates for infants, adolescents, and aging cohorts, and second by incorporating structural MRI (sMRI) and diffusion MRI (dMRI) modalities. Specifically, we built spatiotemporal fMRI templates based on 6,000 resting-state scans from four datasets. This is the first attempt to create robust ICA templates covering dynamic brain development across the lifespan. For the sMRI and dMRI data, we used two large publicly available datasets including more than 30,000 scans to build reliable templates. We employed a spatial similarity analysis to identify replicable templates and investigate the degree to which unique and similar patterns are reflective in different age populations. Our results suggest remarkably high similarity of the resulting adapted components, even across extreme age differences. With the new templates, the NeuroMark framework allows us to perform age-specific adaptations and to capture features adaptable to each modality, therefore facilitating biomarker identification across brain disorders. In sum, the present work demonstrates the generalizability of NeuroMark templates and suggests the potential of new templates to boost accuracy in mental health research and advance our understanding of lifespan and cross-modal alterations.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Adulto , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Encéfalo/diagnóstico por imagen , Adolescente , Adulto Joven , Masculino , Anciano , Femenino , Persona de Mediana Edad , Lactante , Niño , Envejecimiento/fisiología , Preescolar , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Anciano de 80 o más Años , Neuroimagen/métodos , Neuroimagen/normas , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/normas
2.
Hum Brain Mapp ; 44(2): 509-522, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36574598

RESUMEN

Characterizing neuropsychiatric disorders is challenging due to heterogeneity in the population. We propose combining structural and functional neuroimaging and genomic data in a multimodal classification framework to leverage their complementary information. Our objectives are two-fold (i) to improve the classification of disorders and (ii) to introspect the concepts learned to explore underlying neural and biological mechanisms linked to mental disorders. Previous multimodal studies have focused on naïve neural networks, mostly perceptron, to learn modality-wise features and often assume equal contribution from each modality. Our focus is on the development of neural networks for feature learning and implementing an adaptive control unit for the fusion phase. Our mid fusion with attention model includes a multilayer feed-forward network, an autoencoder, a bi-directional long short-term memory unit with attention as the features extractor, and a linear attention module for controlling modality-specific influence. The proposed model acquired 92% (p < .0001) accuracy in schizophrenia prediction, outperforming several other state-of-the-art models applied to unimodal or multimodal data. Post hoc feature analyses uncovered critical neural features and genes/biological pathways associated with schizophrenia. The proposed model effectively combines multimodal neuroimaging and genomics data for predicting mental disorders. Interpreting salient features identified by the model may advance our understanding of their underlying etiological mechanisms.


Asunto(s)
Trastornos Mentales , Esquizofrenia , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Trastornos Mentales/diagnóstico por imagen , Trastornos Mentales/genética , Redes Neurales de la Computación , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética
3.
Hum Brain Mapp ; 44(6): 2620-2635, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36840728

RESUMEN

Resting-state functional network connectivity (rsFNC) has shown utility for identifying characteristic functional brain patterns in individuals with psychiatric and mood disorders, providing a promising avenue for biomarker development. However, several factors have precluded widespread clinical adoption of rsFNC diagnostics, namely a lack of standardized approaches for capturing comparable and reproducible imaging markers across individuals, as well as the disagreement on the amount of data required to robustly detect intrinsic connectivity networks (ICNs) and diagnostically relevant patterns of rsFNC at the individual subject level. Recently, spatially constrained independent component analysis (scICA) has been proposed as an automated method for extracting ICNs standardized to a chosen network template while still preserving individual variation. Leveraging the scICA methodology, which solves the former challenge of standardized neuroimaging markers, we investigate the latter challenge of identifying a minimally sufficient data length for clinical applications of resting-state fMRI (rsfMRI). Using a dataset containing rsfMRI scans of individuals with schizophrenia and controls (M = 310) as well as simulated rsfMRI, we evaluated the robustness of ICN and rsFNC estimates at both the subject- and group-level, as well as the performance of diagnostic classification, with respect to the length of the rsfMRI time course. We found individual estimates of ICNs and rsFNC from the full-length (5 min) reference time course were sufficiently approximated with just 3-3.5 min of data (r = 0.85, 0.88, respectively), and significant differences in group-average rsFNC could be sufficiently approximated with even less data, just 2 min (r = 0.86). These results from the shorter clinical data were largely consistent with the results from validation experiments using longer time series from both simulated (30 min) and real-world (14 min) datasets, in which estimates of subject-level FNC were reliably estimated with 3-5 min of data. Moreover, in the real-world data we found rsFNC and ICN estimates generated across the full range of data lengths (0.5-14 min) more reliably matched those generated from the first 5 min of scan time than those generated from the last 5 min, suggesting increased influence of "late scan" noise factors such as fatigue or drowsiness may limit the reliability of FNC from data collected after 10+ min of scan time, further supporting the notion of shorter scans. Lastly, a diagnostic classification model trained on just 2 min of data retained 97%-98% classification accuracy relative to that of the full-length reference model. Our results suggest that, when decomposed with scICA, rsfMRI scans of just 2-5 min show good clinical utility without significant loss of individual FNC information of longer scan lengths.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Neuroimagen , Trastornos del Humor , Mapeo Encefálico/métodos
4.
Curr Neurol Neurosci Rep ; 23(12): 937-946, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37999830

RESUMEN

PURPOSE OF REVIEW: Over the last decade, evidence suggests that a combination of behavioral and neuroimaging findings can help illuminate changes in functional dysconnectivity in schizophrenia. We review the recent connectivity literature considering several vital models, considering connectivity findings, and relationships with clinical symptoms. We reviewed resting state fMRI studies from 2017 to 2023. We summarized the role of two sets of brain networks (cerebello-thalamo-cortical (CTCC) and the triple network set) across three hypothesized models of schizophrenia etiology (neurodevelopmental, vulnerability-stress, and neurotransmitter hypotheses). RECENT FINDINGS: The neurotransmitter and neurodevelopmental models best explained CTCC-subcortical dysfunction, which was consistently connected to symptom severity and motor symptoms. Triple network dysconnectivity was linked to deficits in executive functioning, and the salience network (SN)-default mode network dysconnectivity was tied to disordered thought and attentional deficits. This paper links behavioral symptoms of schizophrenia (symptom severity, motor, executive functioning, and attentional deficits) to various hypothesized mechanisms.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Neurotransmisores , Vías Nerviosas/diagnóstico por imagen
5.
Hum Brain Mapp ; 43(15): 4556-4566, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35762454

RESUMEN

In this work, we focus on explicitly nonlinear relationships in functional networks. We introduce a technique using normalized mutual information (NMI) that calculates the nonlinear relationship between different brain regions. We demonstrate our proposed approach using simulated data and then apply it to a dataset previously studied by Damaraju et al. This resting-state fMRI data included 151 schizophrenia patients and 163 age- and gender-matched healthy controls. We first decomposed these data using group independent component analysis (ICA) and yielded 47 functionally relevant intrinsic connectivity networks. Our analysis showed a modularized nonlinear relationship among brain functional networks that was particularly noticeable in the sensory and visual cortex. Interestingly, the modularity appears both meaningful and distinct from that revealed by the linear approach. Group analysis identified significant differences in explicitly nonlinear functional network connectivity (FNC) between schizophrenia patients and healthy controls, particularly in the visual cortex, with controls showing more nonlinearity (i.e., higher normalized mutual information between time courses with linear relationships removed) in most cases. Certain domains, including subcortical and auditory, showed relatively less nonlinear FNC (i.e., lower normalized mutual information), whereas links between the visual and other domains showed evidence of substantial nonlinear and modular properties. Overall, these results suggest that quantifying nonlinear dependencies of functional connectivity may provide a complementary and potentially important tool for studying brain function by exposing relevant variation that is typically ignored. Beyond this, we propose a method that captures both linear and nonlinear effects in a "boosted" approach. This method increases the sensitivity to group differences compared to the standard linear approach, at the cost of being unable to separate linear and nonlinear effects.


Asunto(s)
Esquizofrenia , Corteza Visual , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética/métodos , Descanso , Esquizofrenia/diagnóstico por imagen , Corteza Visual/diagnóstico por imagen
6.
Neuroimage ; 224: 117385, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32950691

RESUMEN

The human brain is a dynamic system that incorporates the evolution of local activities and the reconfiguration of brain interactions. Reoccurring brain patterns, regarded as "brain states", have revealed new insights into the pathophysiology of brain disorders, particularly schizophrenia. However, previous studies only focus on the dynamics of either brain activity or connectivity, ignoring the temporal co-evolution between them. In this work, we propose to capture dynamic brain states with covarying activity-connectivity and probe schizophrenia-related brain abnormalities. We find that the state-based activity and connectivity show high correspondence, where strong and antagonistic connectivity is accompanied with strong low-frequency fluctuations across the whole brain while weak and sparse connectivity co-occurs with weak low-frequency fluctuations. In addition, graphical analysis shows that connectivity network efficiency is associated with the fluctuation of brain activities and such associations are different across brain states. Compared with healthy controls, schizophrenia patients spend more time in weakly-connected and -activated brain states but less time in strongly-connected and -activated brain states. schizophrenia patients also show lower efficiency in thalamic regions within the "strong" states. Interestingly, the atypical fractional occupancy of one brain state is correlated with individual attention performance. Our findings are replicated in another independent dataset and validated using different brain parcellation schemes. These converging results suggest that the brain spontaneously reconfigures with covarying activity and connectivity and such co-evolutionary property might provide meaningful information on the mechanism of brain disorders which cannot be observed by investigating either of them alone.


Asunto(s)
Encéfalo , Red Nerviosa , Fenómenos Fisiológicos del Sistema Nervioso , Vías Nerviosas , Adulto , Encéfalo/fisiología , Encéfalo/fisiopatología , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Red Nerviosa/fisiopatología , Vías Nerviosas/fisiología , Vías Nerviosas/fisiopatología , Adulto Joven
7.
NMR Biomed ; 33(6): e4294, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32207187

RESUMEN

The human brain is asymmetrically lateralized for certain functions (such as language processing) to regions in one hemisphere relative to the other. Asymmetries are measured with a laterality index (LI). However, traditional LI measures are limited by a lack of consensus on metrics used for its calculation. To address this limitation, source-based laterality (SBL) leverages an independent component analysis for the identification of laterality-specific alterations, identifying covarying components between hemispheres across subjects. SBL is successfully implemented with simulated data with inherent differences in laterality. SBL is then compared with a voxel-wise analysis utilizing structural data from a sample of patients with schizophrenia and controls without schizophrenia. SBL group comparisons identified three distinct temporal regions and one cerebellar region with significantly altered laterality in patients with schizophrenia relative to controls. Previous work highlights reductions in laterality (ie, reduced left gray matter volume) in patients with schizophrenia compared with controls without schizophrenia. Results from this pilot SBL project are the first, to our knowledge, to identify covarying laterality differences within discrete temporal brain regions. The authors argue SBL provides a unique focus to detect covarying laterality differences in patients with schizophrenia, facilitating the discovery of laterality aspects undetected in previous work.


Asunto(s)
Lateralidad Funcional , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Lóbulo Temporal/patología , Lóbulo Temporal/fisiopatología , Adolescente , Adulto , Mapeo Encefálico , Simulación por Computador , Femenino , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiopatología , Estadísticas no Paramétricas , Adulto Joven
8.
Hum Brain Mapp ; 40(10): 3058-3077, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30884018

RESUMEN

The brain is highly dynamic, reorganizing its activity at different interacting spatial and temporal scales, including variation within and between brain networks. The chronnectome is a model of the brain in which nodal activity and connectivity patterns change in fundamental and recurring ways over time. Most literature assumes fixed spatial nodes/networks, ignoring the possibility that spatial nodes/networks may vary in time. Here, we introduce an approach to calculate a spatially fluid chronnectome (called the spatial chronnectome for clarity), which focuses on the variations of networks coupling at the voxel level, and identify a novel set of spatially dynamic features. Results reveal transient spatially fluid interactions between intra- and internetwork relationships in which brain networks transiently merge and separate, emphasizing dynamic segregation and integration. Brain networks also exhibit distinct spatial patterns with unique temporal characteristics, potentially explaining a broad spectrum of inconsistencies in previous studies that assumed static networks. Moreover, we show anticorrelative connections to brain networks are transient as opposed to constant across the entire scan. Preliminary assessments using a multi-site dataset reveal the ability of the approach to obtain new information and nuanced alterations that remain undetected during static analysis. Patients with schizophrenia (SZ) display transient decreases in voxel-wise network coupling within visual and auditory networks, and higher intradomain coupling variability. In summary, the spatial chronnectome represents a new direction of research enabling the study of functional networks which are transient at the voxel level, and the identification of mechanisms for within- and between-subject spatial variability.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Modelos Neurológicos , Vías Nerviosas/fisiología , Esquizofrenia/fisiopatología , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Adulto Joven
9.
Hum Brain Mapp ; 40(13): 3795-3809, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31099151

RESUMEN

There is growing evidence that rather than using a single brain imaging modality to study its association with physiological or symptomatic features, the field is paying more attention to fusion of multimodal information. However, most current multimodal fusion approaches that incorporate functional magnetic resonance imaging (fMRI) are restricted to second-level 3D features, rather than the original 4D fMRI data. This trade-off is that the valuable temporal information is not utilized during the fusion step. Here we are motivated to propose a novel approach called "parallel group ICA+ICA" that incorporates temporal fMRI information from group independent component analysis (GICA) into a parallel independent component analysis (ICA) framework, aiming to enable direct fusion of first-level fMRI features with other modalities (e.g., structural MRI), which thus can detect linked functional network variability and structural covariations. Simulation results show that the proposed method yields accurate intermodality linkage detection regardless of whether it is strong or weak. When applied to real data, we identified one pair of significantly associated fMRI-sMRI components that show group difference between schizophrenia and controls in both modalities, and this linkage can be replicated in an independent cohort. Finally, multiple cognitive domain scores can be predicted by the features identified in the linked component pair by our proposed method. We also show these multimodal brain features can predict multiple cognitive scores in an independent cohort. Overall, results demonstrate the ability of parallel GICA+ICA to estimate joint information from 4D and 3D data without discarding much of the available information up front, and the potential for using this approach to identify imaging biomarkers to study brain disorders.


Asunto(s)
Neuroimagen Funcional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Adulto , Ensayos Clínicos Fase III como Asunto , Simulación por Computador , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Red Nerviosa/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Adulto Joven
10.
Hum Brain Mapp ; 40(6): 1969-1986, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30588687

RESUMEN

The analysis of time-varying activity and connectivity patterns (i.e., the chronnectome) using resting-state magnetic resonance imaging has become an important part of ongoing neuroscience discussions. The majority of previous work has focused on variations of temporal coupling among fixed spatial nodes or transition of the dominant activity/connectivity pattern over time. Here, we introduce an approach to capture spatial dynamics within functional domains (FDs), as well as temporal dynamics within and between FDs. The approach models the brain as a hierarchical functional architecture with different levels of granularity, where lower levels have higher functional homogeneity and less dynamic behavior and higher levels have less homogeneity and more dynamic behavior. First, a high-order spatial independent component analysis is used to approximate functional units. A functional unit is a pattern of regions with very similar functional activity over time. Next, functional units are used to construct FDs. Finally, functional modules (FMs) are calculated from FDs, providing an overall view of brain dynamics. Results highlight the spatial fluidity within FDs, including a broad spectrum of changes in regional associations, from strong coupling to complete decoupling. Moreover, FMs capture the dynamic interplay between FDs. Patients with schizophrenia show transient reductions in functional activity and state connectivity across several FDs, particularly the subcortical domain. Activity and connectivity differences convey unique information in many cases (e.g., the default mode) highlighting their complementarity information. The proposed hierarchical model to capture FD spatiotemporal variations provides new insight into the macroscale chronnectome and identifies changes hidden from existing approaches.


Asunto(s)
Encéfalo/diagnóstico por imagen , Modelos Neurológicos , Adolescente , Adulto , Encéfalo/fisiología , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
11.
Neuroimage ; 134: 494-507, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27079528

RESUMEN

Spontaneous fluctuations of resting state functional MRI (rsfMRI) have been widely used to understand the macro-connectome of the human brain. However, these fluctuations are not synchronized among subjects, which leads to limitations and makes utilization of first-level model-based methods challenging. Considering this limitation of rsfMRI data in the time domain, we propose to transfer the spatiotemporal information of the rsfMRI data to another domain, the connectivity domain, in which each value represents the same effect across subjects. Using a set of seed networks and a connectivity index to calculate the functional connectivity for each seed network, we transform data into the connectivity domain by generating connectivity weights for each subject. Comparison of the two domains using a data-driven method suggests several advantages in analyzing data using data-driven methods in the connectivity domain over the time domain. We also demonstrate the feasibility of applying model-based methods in the connectivity domain, which offers a new pathway for the use of first-level model-based methods on rsfMRI data. The connectivity domain, furthermore, demonstrates a unique opportunity to perform first-level feature-based data-driven and model-based analyses. The connectivity domain can be constructed from any technique that identifies sets of features that are similar across subjects and can greatly help researchers in the study of macro-connectome brain function by enabling us to perform a wide range of model-based and data-driven approaches on rsfMRI data, decreasing susceptibility of analysis techniques to parameters that are not related to brain connectivity information, and evaluating both static and dynamic functional connectivity of the brain from a new perspective.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Conectoma/métodos , Imagen por Resonancia Magnética , Adulto , Interpretación Estadística de Datos , Humanos , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Análisis Multivariante , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador
12.
Neural Plast ; 2016: 4072402, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26819765

RESUMEN

Mild traumatic brain injury (mTBI) is a major public health concern. Functional MRI has reported alterations in several brain networks following mTBI. However, the connectome-scale brain network changes are still unknown. In this study, sixteen mTBI patients were prospectively recruited from an emergency department and followed up at 4-6 weeks after injury. Twenty-four healthy controls were also scanned twice with the same time interval. Three hundred fifty-eight brain landmarks that preserve structural and functional correspondence of brain networks across individuals were used to investigate longitudinal brain connectivity. Network-based statistic (NBS) analysis did not find significant difference in the group-by-time interaction and time effects. However, 258 functional pairs show group differences in which mTBI patients have higher functional connectivity. Meta-analysis showed that "Action" and "Cognition" are the most affected functional domains. Categorization of connectomic signatures using multiview group-wise cluster analysis identified two patterns of functional hyperconnectivity among mTBI patients: (I) between the posterior cingulate cortex and the association areas of the brain and (II) between the occipital and the frontal lobes of the brain. Our results demonstrate that brain concussion renders connectome-scale brain network connectivity changes, and the brain tends to be hyperactivated to compensate the pathophysiological disturbances.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Encéfalo/fisiopatología , Conectoma , Red Nerviosa/fisiopatología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Recuperación de la Función/fisiología , Adulto Joven
13.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915715

RESUMEN

The most discriminative and revealing patterns in the neuroimaging population are often confined to smaller subdivisions of the samples and features. Especially in neuropsychiatric conditions, symptoms are expressed within micro subgroups of individuals and may only underly a subset of neurological mechanisms. As such, running a whole-population analysis yields suboptimal outcomes leading to reduced specificity and interpretability. Biclustering is a potential solution since subject heterogeneity makes one-dimensional clustering less effective in this realm. Yet, high dimensional sparse input space and semantically incoherent grouping of attributes make post hoc analysis challenging. Therefore, we propose a deep neural network called semantic locality preserving auto decoder (SpaDE), for unsupervised feature learning and biclustering. SpaDE produces coherent subgroups of subjects and neural features preserving semantic locality and enhancing neurobiological interpretability. Also, it regularizes for sparsity to improve representation learning. We employ SpaDE on human brain connectome collected from schizophrenia (SZ) and healthy control (HC) subjects. The model outperforms several state-of-the-art biclustering methods. Our method extracts modular neural communities showing significant (HC/SZ) group differences in distinct brain networks including visual, sensorimotor, and subcortical. Moreover, these bi-clustered connectivity substructures exhibit substantial relations with various cognitive measures such as attention, working memory, and visual learning.

14.
Neurosci Lett ; 822: 137624, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38218321

RESUMEN

Functional correspondences are known to exist within the brains of both human and non-human primates however, our understanding of this phenomenon remains largely incomplete. The examination of the topological characteristics inherent in whole-brain functional connectivity bears immense promise in elucidating shared as well as distinctive patterns across different species. In this investigation, we applied topological graph analysis to brain networks and scrutinized the congruencies and disparities within the connectomes of human and marmoset monkey brains. The findings brought to light noteworthy similarities in functional connectivity patterns distributed across the entire brain, with a particular emphasis on the dorsal attention network, default mode network and visual network. Moreover, we discerned unique neural connections between humans and marmosets during both resting and task-oriented states. In essence, our study reveals a combination of shared and divergent functional brain connections underlying spontaneous and specific cognitive functions across these two species.


Asunto(s)
Callithrix , Conectoma , Animales , Humanos , Mapeo Encefálico , Vías Nerviosas , Imagen por Resonancia Magnética , Encéfalo
15.
Res Sq ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260417

RESUMEN

Children's brains dynamically adapt to the stimuli from the internal state and the external environment, allowing for changes in cognitive and mental behavior. In this work, we performed a large-scale analysis of dynamic functional connectivity (DFC) in children aged 9 ~ 11 years, investigating how brain dynamics relate to cognitive performance and mental health at an early age. A hybrid independent component analysis framework was applied to the Adolescent Brain Cognitive Development (ABCD) data containing 10,988 children. We combined a sliding-window approach with k-means clustering to identify five brain states with distinct DFC patterns. Interestingly, the occurrence of a strongly connected state was negatively correlated with cognitive performance and positively correlated with dimensional psychopathology in children. Meanwhile, opposite relationships were observed for a sparsely connected state. The composite cognitive score and the ADHD score were the most significantly correlated with the DFC states. The mediation analysis further showed that attention problems mediated the effect of DFC states on cognitive performance. This investigation unveils the neurological underpinnings of DFC states, which suggests that tracking the transient dynamic connectivity may help to characterize cognitive and mental problems in children and guide people to provide early intervention to buffer adverse influences.

16.
bioRxiv ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38405742

RESUMEN

Much of the complexity and diversity found in nature are driven by nonlinear phenomena, and this holds true for the brain. Nonlinear dynamics theory has been successfully utilized in explaining brain functions from a biophysics standpoint, and the field of statistical physics continues to make substantial progress in understanding brain connectivity and function. This study delves into complex brain functional connectivity using biophysical nonlinear dynamics approaches. We aim to uncover hidden information in high-dimensional and nonlinear neural signals, with the hope of providing a useful tool for analyzing information transitions in functionally complex networks. By utilizing phase portraits and fuzzy recurrence plots, we investigated the latent information in the functional connectivity of complex brain networks. Our numerical experiments, which include synthetic linear dynamics neural time series and a biophysically realistic neural mass model, showed that phase portraits and fuzzy recurrence plots are highly sensitive to changes in neural dynamics, and they can also be used to predict functional connectivity based on structural connectivity. Furthermore, the results showed that phase trajectories of neuronal activity encode low-dimensional dynamics, and the geometric properties of the limit-cycle attractor formed by the phase portraits can be used to explain the neurodynamics. Additionally, our results showed that the phase portrait and fuzzy recurrence plots can be used as functional connectivity descriptors, and both metrics were able to capture and explain nonlinear dynamics behavior during specific cognitive tasks. In conclusion, our findings suggest that phase portraits and fuzzy recurrence plots could be highly effective as functional connectivity descriptors, providing valuable insights into nonlinear dynamics in the brain.

17.
bioRxiv ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38559041

RESUMEN

Dynamic functional network connectivity (dFNC) analysis is a widely used approach for studying brain function and offering insight into how brain networks evolve over time. Typically, dFNC studies utilized fixed spatial maps and evaluate transient changes in coupling among time courses estimated from independent component analysis (ICA). This manuscript presents a complementary approach that relaxes this assumption by spatially reordering the components dynamically at each timepoint to optimize for a smooth gradient in the FNC (i.e., a smooth gradient among ICA connectivity values). Several methods are presented to summarize dynamic FNC gradients (dFNGs) over time, starting with static FNC gradients (sFNGs), then exploring the reordering properties as well as the dynamics of the gradients themselves. We then apply this approach to a dataset of schizophrenia (SZ) patients and healthy controls (HC). Functional dysconnectivity between different brain regions has been reported in schizophrenia, yet the neural mechanisms behind it remain elusive. Using resting state fMRI and ICA on a dataset consisting of 151 schizophrenia patients and 160 age and gender-matched healthy controls, we extracted 53 intrinsic connectivity networks (ICNs) for each subject using a fully automated spatially constrained ICA approach. We develop several summaries of our functional network connectivity gradient analysis, both in a static sense, computed as the Pearson correlation coefficient between full time series, and a dynamic sense, computed using a sliding window approach followed by reordering based on the computed gradient, and evaluate group differences. Static connectivity analysis revealed significantly stronger connectivity between subcortical (SC), auditory (AUD) and visual (VIS) networks in patients, as well as hypoconnectivity in sensorimotor (SM) network relative to controls. sFNG analysis highlighted distinctive clustering patterns in patients and HCs along cognitive control (CC)/ default mode network (DMN), as well as SC/ AUD/ SM/ cerebellar (CB), and VIS gradients. Furthermore, we observed significant differences in the sFNGs between groups in SC and CB domains. dFNG analysis suggested that SZ patients spend significantly more time in a SC/ CB state based on the first gradient, while HCs favor the SM/DMN state. For the second gradient, however, patients exhibited significantly higher activity in CB domains, contrasting with HCs' DMN engagement. The gradient synchrony analysis conveyed more shifts between SM/ SC networks and transmodal CC/ DMN networks in patients. In addition, the dFNG coupling revealed distinct connectivity patterns between SC, SM and CB domains in SZ patients compared to HCs. To recap, our results advance our understanding of brain network modulation by examining smooth connectivity trajectories. This provides a more complete spatiotemporal summary of the data, contributing to the growing body of current literature regarding the functional dysconnectivity in schizophrenia patients. By employing dFNG, we highlight a new perspective to capture large scale fluctuations across the brain while maintaining the convenience of brain networks and low dimensional summary measures.

18.
medRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260328

RESUMEN

Many psychiatric and neurological disorders show significant heritability, indicating strong genetic influence. In parallel, dynamic functional network connectivity (dFNC) measures functional temporal coupling between brain networks in a time-varying manner and has proven to identify disease-related changes in the brain. However, it remains largely unclear how genetic risk contributes to brain dysconnectivity that further manifests into clinical symptoms. The current work aimed to address this gap by proposing a novel joint ICA (jICA)-based "dynamic fusion" framework to identify dynamically tuned SNP manifolds by linking static SNPs to dynamic functional information of the brain. The sliding window approach was utilized to estimate four dFNC states and compute subject-level state-specific dFNC features. Each state of dFNC features were then combined with 12946 SZ risk SNPs for jICA decomposition, resulting in four parallel fusions in 32861 European ancestry individuals within the UK Biobank cohort. The identified joint SNP-dFNC components were further validated for SZ relevance in an aggregated SZ cohort, and compared for across-state similarity to indicate level of dynamism. The results supported that dynamic fusion yielded "static" and "dynamic" components (i.e., high and low across-state similarity, respectively) for SNP and dFNC modalities. As expected, the SNP components presented a mixture of static and dynamic manifolds, with the latter largely driven by fusion with dFNC. We also showed that some of the dynamic SNP manifolds uniquely elicited by fusion with state-specific dFNC features complemented each other in terms of biological interpretation. This dynamic fusion framework thus allows expanding the SNP modality to manifolds in the time dimension, which provides a unique lens to elicit unique SNP correlates of dFNC otherwise unseen, promising additional insights on how genetic risk links to disease-related dysconnectivity.

19.
medRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798576

RESUMEN

Objective: Understanding the neurobiology of cognitive dysfunction in psychotic disorders remains elusive, as does developing effective interventions. Limited knowledge about the biological heterogeneity of cognitive dysfunction hinders progress. This study aimed to identify subgroups of patients with psychosis with distinct patterns of functional brain alterations related to cognition (cognitive biotypes). Methods: B-SNIP consortium data (2,270 participants including participants with psychotic disorders, relatives, and controls) was analyzed. Researchers used reference-informed independent component analysis and the NeuroMark 100k multi-scale intrinsic connectivity networks (ICN) template to obtain subject-specific ICNs and whole-brain functional network connectivity (FNC). FNC features associated with cognitive performance were identified through multivariate joint analysis. K-means clustering identified subgroups of patients based on these features in a discovery set. Subgroups were further evaluated in a replication set and in relatives. Results: Two biotypes with different functional brain alteration patterns were identified. Biotype 1 exhibited brain-wide alterations, involving hypoconnectivity in cerebellar-subcortical and somatomotor-visual networks and worse cognitive performance. Biotype 2 exhibited hyperconnectivity in somatomotor-subcortical networks and hypoconnectivity in somatomotor-high cognitive processing networks, and better preserved cognitive performance. Demographic, clinical, cognitive, and FNC characteristics of biotypes were consistent in discovery and replication sets, and in relatives. 70.12% of relatives belonged to the same biotype as their affected family members. Conclusions: These findings suggest two distinctive psychosis-related cognitive biotypes with differing functional brain patterns shared with their relatives. Patient stratification based on these biotypes instead of traditional diagnosis may help to optimize future research and clinical trials addressing cognitive dysfunction in psychotic disorders.

20.
Biol Psychiatry ; 95(7): 699-708, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769983

RESUMEN

BACKGROUND: Accurate psychiatric risk assessment requires biomarkers that are both stable and adaptable to development. Functional network connectivity (FNC), which steadily reconfigures over time, potentially contains abundant information to assess psychiatric risks. However, the absence of suitable analytical methodologies has constrained this area of investigation. METHODS: We investigated the brainwide risk score (BRS), a novel FNC-based metric that contrasts the relative distances of an individual's FNC to that of psychiatric disorders versus healthy control references. To generate group-level disorder and healthy control references, we utilized a large brain imaging dataset containing 5231 total individuals diagnosed with schizophrenia, autism spectrum disorder, major depressive disorder, and bipolar disorder and their corresponding healthy control individuals. The BRS metric was employed to assess the psychiatric risk in 2 new datasets: Adolescent Brain Cognitive Development (ABCD) Study (n = 8191) and Human Connectome Project Early Psychosis (n = 170). RESULTS: The BRS revealed a clear, reproducible gradient of FNC patterns from low to high risk for each psychiatric disorder in unaffected adolescents. We found that low-risk ABCD Study adolescent FNC patterns for each disorder were strongly present in over 25% of the ABCD Study participants and homogeneous, whereas high-risk patterns of each psychiatric disorder were strongly present in about 1% of ABCD Study participants and heterogeneous. The BRS also showed its effectiveness in predicting psychosis scores and distinguishing individuals with early psychosis from healthy control individuals. CONCLUSIONS: The BRS could be a new image-based tool for assessing psychiatric vulnerability over time and in unaffected individuals, and it could also serve as a potential biomarker, facilitating early screening and monitoring interventions.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Depresivo Mayor , Trastornos Mentales , Humanos , Adolescente , Trastorno del Espectro Autista/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Factores de Riesgo , Biomarcadores , Encéfalo/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA