Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Physiol ; 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37057678

RESUMEN

Myocardial stretch physiologically activates NADPH oxidase 2 (NOX2) to increase reactive oxygen species (ROS) production. Although physiological low-level ROS are known to be important as signalling molecules, the role of stretch-induced ROS in the intact myocardium remains unclear. To address this, we investigated the effects of stretch-induced ROS on myocardial cellular contractility and calcium transients in C57BL/6J and NOX2-/- mice. Axial stretch was applied to the isolated cardiomyocytes using a pair of carbon fibres attached to both cell ends to evaluate stretch-induced modulation in the time course of the contraction curve and calcium transient, as well as to evaluate maximum cellular elastance, an index of cellular contractility, which is obtained from the end-systolic force-length relationship. In NOX2-/- mice, the peak calcium transient was not altered by stretch, as that in wild-type mice, but the lack of stretch-induced ROS delayed the rise of calcium transients and reduced contractility. Our mathematical modelling studies suggest that the augmented activation of ryanodine receptors by stretch-induced ROS causes a rapid and large increase in the calcium release flux, resulting in a faster rise in the calcium transient. The slight increase in the magnitude of calcium transients is offset by a decrease in sarcoplasmic reticulum calcium content as a result of ROS-induced calcium leakage, but the faster rise in calcium transients still maintains higher contractility. In conclusion, a physiological role of stretch-induced ROS is to increase contractility to counteract a given preload, that is, it contributes to the Frank-Starling law of the heart. KEY POINTS: Myocardial stretch increases the production of reactive oxygen species by NADPH oxidase 2. We used NADPH oxidase 2 knockout mice to elucidate the physiological role of stretch-induced reactive oxygen species in the heart. We showed that stretch-induced reactive oxygen species modulate the rising phase of calcium transients and increase myocardial contractility. A mathematical model simulation study demonstrated that rapid activation of ryanodine receptors by reactive oxygen species is important for increased contractility. This response is advantageous for the myocardium, which must contract against a given preload.

2.
Biophys J ; 121(17): 3286-3294, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35841143

RESUMEN

Cardiomyocytes are contractile cells that regulate heart contraction. Ca2+ flux via Ca2+ channels activates actomyosin interactions, leading to cardiomyocyte contraction, which is modulated by physical factors (e.g., stretch, shear stress, and hydrostatic pressure). We evaluated the mechanism triggering slow contractions using a high-pressure microscope to characterize changes in cell morphology and intracellular Ca2+ concentration ([Ca2+]i) in mouse cardiomyocytes exposed to high hydrostatic pressures. We found that cardiomyocytes contracted slowly without an acute transient increase in [Ca2+]i, while a myosin ATPase inhibitor interrupted pressure-induced slow contractions. Furthermore, transmission electron microscopy showed that, although the sarcomere length was shortened upon the application of 20 MPa, this pressure did not collapse cellular structures such as the sarcolemma and sarcomeres. Our results suggest that pressure-induced slow contractions in cardiomyocytes are driven by the activation of actomyosin interactions without an acute transient increase in [Ca2+]i.


Asunto(s)
Actomiosina , Miocitos Cardíacos , Animales , Calcio , Presión Hidrostática , Ratones , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Sarcómeros/fisiología
4.
J Mol Cell Cardiol ; 114: 276-287, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29217431

RESUMEN

Mechanical properties of cardiomyocytes from different transmural regions are heterogeneous in the left ventricular wall. The cardiomyocyte mechanical environment affects this heterogeneity because of mechano-electric feedback mechanisms. In the present study, we investigated the effects of the mechanical load (preload and afterload) on transmural differences in contraction of subendocardial (ENDO) and subepicardial (EPI) single cells isolated from the murine left ventricle. Various preloads imposed via axial stretch and afterloads (unloaded and heavy loaded conditions) were applied to the cells using carbon fiber techniques for single myocytes. To simulate experimentally obtained results and to predict mechanisms underlying the cellular response to change in load, our mathematical models of the ENDO and EPI cells were used. Our major findings are the following. Our results show that ENDO and EPI cardiomyocytes have different mechanical responses to changes in preload to the cells. Under auxotonic contractions at low preload (unstretched cells), time to peak contraction (Tmax) and the time constant of [Ca2+]i transient decay were significantly longer in ENDO cells than in EPI cells. An increase in preload (stretched cells) prolonged Tmax in both cell types; however, the prolongation was greater in EPI cells, resulting in a decrease in the transmural gradient in Tmax at high preload. Comparing unloaded and heavy loaded (isometric) contractions of the cells we found that transmural gradient in the time course of contraction is independent of the loading conditions. Our mathematical cell models were able to reproduce the experimental results on the distinct cellular responses to changes in the mechanical load when we accounted for an ENDO/EPI difference in the parameters of cooperativity of calcium activation of myofilaments.


Asunto(s)
Separación Celular/métodos , Ventrículos Cardíacos/citología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Estrés Mecánico , Animales , Fenómenos Biomecánicos , Señalización del Calcio , Diástole/fisiología , Endocardio/fisiología , Acoplamiento Excitación-Contracción , Masculino , Ratones Endogámicos C57BL , Modelos Cardiovasculares , Pericardio/fisiología , Sístole/fisiología , Factores de Tiempo
5.
Acta Med Okayama ; 66(6): 435-42, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23254577

RESUMEN

Although propofol is commonly used for general anesthesia, its direct effects on left ventricular (LV) contractility and energetics remain unknown. Accordingly, we studied the effects of intracoronary propofol on excised cross-circulated canine hearts using the framework of the Emax (a contractility index)-PVA (systolic pressure-volume area, a measure of total mechanical energy)-V(O2) (myocardial oxygen consumption per beat) relationship. We obtained 1) the V(O2)-PVA relationship of isovolumic contractions with varied LV volumes at a constant Emax, 2) the V(O2)-PVA relationship with varied LV volumes at a constant intracoronary concentration of propofol, and 3) the V(O2)-PVA relationship under increased intracoronary concentrations of either propofol or CaCl(2) at a constant LV volume to assess the cardiac mechanoenergetic effects of propofol. We found that propofol decreased Emax dose-dependently. The slope of the linear V(O2)-PVA relationship (oxygen cost of PVA) remained unchanged by propofol. The PVA-independent V(O2)-Emax relationship (oxygen cost of Emax) was the same for propofol and Ca(2+). In conclusion, propofol showed a direct negative inotropic effect on LV. At its clinical concentrations, decreases in contractility by propofol were relatively small. Propofol shows mechanoenergetic effects on the LV that are similar to those of Ca(2+) blockers or ß-antagonists-i.e., it exerts negative inotropic effects without changing the oxygen costs of Emax and PVA.


Asunto(s)
Anestésicos Intravenosos/farmacología , Metabolismo Energético/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Propofol/farmacología , Animales , Circulación Cruzada , Perros , Técnicas In Vitro
6.
Nat Commun ; 13(1): 6374, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289215

RESUMEN

Baroreflex control of cardiac contraction (positive inotropy) through sympathetic nerve activation is important for cardiocirculatory homeostasis. Transient receptor potential canonical subfamily (TRPC) channels are responsible for α1-adrenoceptor (α1AR)-stimulated cation entry and their upregulation is associated with pathological cardiac remodeling. Whether TRPC channels participate in physiological pump functions remains unclear. We demonstrate that TRPC6-specific Zn2+ influx potentiates ß-adrenoceptor (ßAR)-stimulated positive inotropy in rodent cardiomyocytes. Deletion of trpc6 impairs sympathetic nerve-activated positive inotropy but not chronotropy in mice. TRPC6-mediated Zn2+ influx boosts α1AR-stimulated ßAR/Gs-dependent signaling in rat cardiomyocytes by inhibiting ß-arrestin-mediated ßAR internalization. Replacing two TRPC6-specific amino acids in the pore region with TRPC3 residues diminishes the α1AR-stimulated Zn2+ influx and positive inotropic response. Pharmacological enhancement of TRPC6-mediated Zn2+ influx prevents chronic heart failure progression in mice. Our data demonstrate that TRPC6-mediated Zn2+ influx with α1AR stimulation enhances baroreflex-induced positive inotropy, which may be a new therapeutic strategy for chronic heart failure.


Asunto(s)
Insuficiencia Cardíaca , Canales Catiónicos TRPC , Ratas , Animales , Ratones , Canal Catiónico TRPC6 , Canales Catiónicos TRPC/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Insuficiencia Cardíaca/metabolismo , beta-Arrestinas/metabolismo , Aminoácidos/metabolismo , Zinc/metabolismo
7.
Circ Res ; 104(6): 787-95, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19197074

RESUMEN

We investigate acute effects of axial stretch, applied by carbon fibers (CFs), on diastolic Ca2+ spark rate in rat isolated cardiomyocytes. CFs were attached either to both cell ends (to maximize the stretched region), or to the center and one end of the cell (to compare responses in stretched and nonstretched half-cells). Sarcomere length was increased by 8.01+/-0.94% in the stretched cell fraction, and time series of XY confocal images were recorded to monitor diastolic Ca2+ spark frequency and dynamics. Whole-cell stretch causes an acute increase of Ca2+ spark rate (to 130.7+/-6.4%) within 5 seconds, followed by a return to near background levels (to 104.4+/-5.1%) within 1 minute of sustained distension. Spark rate increased only in the stretched cell region, without significant differences in spark amplitude, time to peak, and decay time constants of sparks in stretched and nonstretched areas. Block of stretch-activated ion channels (2 micromol/L GsMTx-4), perfusion with Na+/Ca2+-free solution, and block of nitric oxide synthesis (1 mmol/L L-NAME) all had no effect on the stretch-induced acute increase in Ca2+ spark rate. Conversely, interference with cytoskeletal integrity (2 hours of 10 micromol/L colchicine) abolished the response. Subsequent electron microscopic tomography confirmed the close approximation of microtubules with the T-tubular-sarcoplasmic reticulum complex (to within approximately 10(-8)m). In conclusion, axial stretch of rat cardiomyocytes acutely and transiently increases sarcoplasmic reticulum Ca2+ spark rate via a mechanism that is independent of sarcolemmal stretch-activated ion channels, nitric oxide synthesis, or availability of extracellular calcium but that requires cytoskeletal integrity. The potential of microtubule-mediated modulation of ryanodine receptor function warrants further investigation.


Asunto(s)
Calcio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Colchicina/farmacología , Inhibidores Enzimáticos/farmacología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Canales Iónicos/antagonistas & inhibidores , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Microscopía por Video/métodos , Microtúbulos/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Péptidos/farmacología , Ratas , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sodio/metabolismo , Venenos de Araña/farmacología , Moduladores de Tubulina/farmacología
8.
Circ J ; 75(11): 2552-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21914957

RESUMEN

BACKGROUND: It remains unclear whether sarcolemmal BK(Ca) channels in post-hatch chick ventricular myocytes contribute to stretch-induced extrasystoles (SIE), and whether they are stretch-activated BK(Ca) (SAK(Ca)) channels or a non-stretch-sensitive BK(Ca) variant. METHODS AND RESULTS: To determine the role of sarcolemmal BK(Ca) channels in SIE and their stretch sensitivity, an isolated 2-week-old Langendorff-perfused chick heart and mathematical simulation were used. The ventricular wall was rapidly stretched by application of a volume change pulse. As the speed of the stretch increased, the probability of SIE also significantly increased, significantly shortening the delay between SIE and the initiation of the stretch. Application of 100 nmol/L of Grammostola spatulata mechanotoxin 4, a cation-selective stretch-activated channel (SAC) blocker, significantly decreased the probability of SIE. The application of Iberiotoxin, however, a BK(Ca) channel blocker, significantly increased the probability of SIE, suggesting that a K(+) efflux via a sarcolemmal BK(Ca) channel reduces SIE by balancing out stretch-induced cation influx via SACs. The simulation using a cardiomyocyte model combined with a new stretch sensitivity model that considers viscoelastic intracellular force transmission showed that stretch sensitivity in BK(Ca) channels is required to reproduce the present wet experimental results. CONCLUSIONS: Sarcolemmal BK(Ca) channels in post-hatch chick ventricular myocytes are SAK(Ca) channels, and they have a suppressive effect on SIE.


Asunto(s)
Complejos Cardíacos Prematuros/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Modelos Cardiovasculares , Miocardio/metabolismo , Sarcolema/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Complejos Cardíacos Prematuros/etiología , Péptidos/farmacología
9.
Exp Physiol ; 95(6): 699-711, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20176677

RESUMEN

We have previously reported the electrophysiological properties of sarcolemmal stretch-activated BK(Ca) (SAKCA) channels cloned from cultured chick embryonic ventricular myocytes. However, the role of BK(Ca) channels in the electrophysiology of the more mature heart is not clear. We have investigated the effects on the BK(Ca) current of axial stretch in post-hatch ventricular myocytes. Whole-cell currents of ventricular myocytes isolated from 2-week-old chicks were recorded using the patch-clamp technique, while the cells were either held at resting length or stretched to cause a 10% increase in sarcomere length using a pair of carbon fibres attached to opposite ends of the cell. Stretch did not affect whole-cell currents immediately after the stretch was applied. However, sustained stretch for 3 min significantly increased outward currents. This stretch-induced change was reversed by applying 10 nm iberiotoxin, a specific BK(Ca) channel blocker, or a Na(+)-Ca(2+)-free environment. These results were reproduced in a computer simulation study. The present study is the first report about the sarcolemmal BK(Ca) current from post-hatch ventricular myocytes. The present results suggest that axial stretch activates BK(Ca) channels via a stretch-induced increase in the cytosolic Na(+) concentration followed by an increased Ca(2+) influx.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Miocitos Cardíacos/fisiología , Sarcolema/fisiología , Animales , Calcio/metabolismo , Pollos , Simulación por Computador , Canales de Potasio de Gran Conductancia Activados por el Calcio/antagonistas & inhibidores , Mecanorreceptores/fisiología , Técnicas de Placa-Clamp , Péptidos/farmacología , Sarcómeros/metabolismo , Sodio/metabolismo
10.
Front Physiol ; 11: 171, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256377

RESUMEN

Transmural differences in ventricular myocardium are maintained by electromechanical coupling and mechano-calcium/mechano-electric feedback. In the present study, we experimentally investigated the influence of preload on the force characteristics of subendocardial (Endo) and subepicardial (Epi) single ventricular cardiomyocytes stretched by up to 20% from slack sarcomere length (SL) and analyzed the results with the help of mathematical modeling. Mathematical models of Endo and Epi cells, which accounted for regional heterogeneity in ionic currents, Ca2+ handling, and myofilament contractile mechanisms, showed that a greater slope of the active tension-length relationship observed experimentally in Endo cardiomyocytes could be explained by greater length-dependent Ca2+ activation in Endo cells compared with Epi ones. The models also predicted that greater length dependence of Ca2+ activation in Endo cells compared to Epi ones underlies, via mechano-calcium-electric feedback, the reduction in the transmural gradient in action potential duration (APD) at a higher preload. However, the models were unable to reproduce the experimental data on a decrease of the transmural gradient in the time to peak contraction between Endo and Epi cells at longer end-diastolic SL. We hypothesize that preload-dependent changes in viscosity should be involved alongside the Frank-Starling effects to regulate the transmural gradient in length-dependent changes in the time course of contraction of Endo and Epi cardiomyocytes. Our experimental data and their analysis based on mathematical modeling give reason to believe that mechano-calcium-electric feedback plays a critical role in the modulation of electrophysiological and contractile properties of myocytes across the ventricular wall.

11.
Front Physiol ; 11: 289, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32372969

RESUMEN

Introduction: In ventricular myocytes, spontaneous release of calcium (Ca2+) from the sarcoplasmic reticulum via ryanodine receptors ("Ca2+ sparks") is acutely increased by stretch, due to a stretch-induced increase of reactive oxygen species (ROS). In acute regional ischemia there is stretch of ischemic tissue, along with an increase in Ca2+ spark rate and ROS production, each of which has been implicated in arrhythmogenesis. Yet, whether there is an impact of ischemia on the stretch-induced increase in Ca2+ sparks and ROS has not been investigated. We hypothesized that ischemia would enhance the increase of Ca2+ sparks and ROS that occurs with stretch. Methods: Isolated ventricular myocytes from mice (male, C57BL/6J) were loaded with fluorescent dye to detect Ca2+ sparks (4.6 µM Fluo-4, 10 min) or ROS (1 µM DCF, 20 min), exposed to normal Tyrode (NT) or simulated ischemia (SI) solution (hyperkalemia [15 mM potassium], acidosis [6.5 pH], and metabolic inhibition [1 mM sodium cyanide, 20 mM 2-deoxyglucose]), and subjected to sustained stretch by the carbon fiber technique (~10% increase in sarcomere length, 15 s). Ca2+ spark rate and rate of ROS production were measured by confocal microscopy. Results: Baseline Ca2+ spark rate was greater in SI (2.54 ± 0.11 sparks·s-1·100 µm-2; n = 103 cells, N = 10 mice) than NT (0.29 ± 0.05 sparks·s-1·100 µm-2; n = 33 cells, N = 9 mice; p < 0.0001). Stretch resulted in an acute increase in Ca2+ spark rate in both SI (3.03 ± 0.13 sparks·s-1·100 µm-2; p < 0.0001) and NT (0.49 ± 0.07 sparks·s-1·100 µm-2; p < 0.0001), with the increase in SI being greater than NT (+0.49 ± 0.04 vs. +0.20 ± 0.04 sparks·s-1·100 µm-2; p < 0.0001). Baseline rate of ROS production was also greater in SI (1.01 ± 0.01 normalized slope; n = 11, N = 8 mice) than NT (0.98 ± 0.01 normalized slope; n = 12, N = 4 mice; p < 0.05), but there was an acute increase with stretch only in SI (+12.5 ± 2.6%; p < 0.001). Conclusion: Ischemia enhances the stretch-induced increase of Ca2+ sparks in ventricular myocytes, with an associated enhancement of stretch-induced ROS production. This effect may be important for premature excitation and/or in the development of an arrhythmogenic substrate in acute regional ischemia.

12.
Prog Biophys Mol Biol ; 97(2-3): 298-311, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18395247

RESUMEN

Cardiac cellular calcium (Ca2+) handling is the well-investigated mediator of excitation-contraction coupling, the process that translates cardiac electrical activation into mechanical events. The reverse--effects of mechanical stimulation on cardiomyocyte Ca2+ handling--are much less well understood, in particular during the inter-beat period, called 'diastole'. We have investigated the effects of diastolic length changes, applied axially using a pair of carbon fibres attached to opposite ends of Guinea pig isolated ventricular myocytes, on the availability of Ca2+ in the main cellular stores (the sarcoplasmic reticulum; SR), by studying the rest-decay of SR Ca2+ content [Ca2+]SR, and the reloading of the SR after prior depletion of Ca2+ from the cell. Cells were loaded with Fura-2 AM (an indicator of the cytosolic 'free' Ca2+ concentration, [Ca2+]i), and pre-conditioned by field-stimulation (2 Hz) at 37 degrees C, while [Ca2+]i transients and sarcomere length (SL) were recorded simultaneously. After reaching a steady state in the behaviour of observed parameters, stimulation was interrupted for between 5 and 60s, while cells were either held at resting length, or stretched (controlled to cause a 10% increase in SL, to aid inter-individual comparison). Thereafter, each cell was returned to its original resting length, followed by swift administration of 10mM of caffeine (in Na+/Ca2+-free solution), which causes the release of Ca2+ from the SR (caffeine), but largely prevents extrusion of Ca2+ from the cytosol to the cell exterior (Na+/Ca2+-free solution). By comparing the [Ca2+]i in cells exposed/not exposed to diastolic stretch of different duration, we assessed the rest-decay dynamics of [Ca2+]SR. To assess SR reloading after initial Ca2+ depletion, the same stretch protocol was implemented after prior emptying of the cell by application of 10mM of caffeine in normal Tyrode solution (which causes Ca2+ to be released from the SR and extruded from the cell via the Na+/Ca2+ exchanger; NCX). Axial stretch enhanced the rate of both rest-decay and reloading of [Ca2+]SR. Application of 40 microM streptomycin, a blocker of stretch-activated ion channels, did not affect the stretch-induced increase in SR reloading. This behaviour was reproduced in a computer simulation study, using a modified version of the 2006 Iribe-Kohl-Noble model of single cardiac myocyte Ca2+ handling, suggesting that stretch increases both Ca2+ leak from the SR and Ca2+ influx via the sarcolemma. This may have important implications for the mobilisation of Ca2+ in stretched cells, and could contribute to the regional 'matching' of individual cardiomyocyte contractility to dynamic, and regionally varying, changes in mechanical loads, such as diastolic pre-load, of cardiac tissue.


Asunto(s)
Mecanotransducción Celular/fisiología , Modelos Biológicos , Miocitos Cardíacos/fisiología , Sarcómeros/fisiología , Retículo Sarcoplasmático/fisiología , Animales , Cobayas , Ventrículos Cardíacos/citología , Técnicas In Vitro , Estrés Mecánico
13.
Cell Calcium ; 79: 68-74, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30836292

RESUMEN

The application of mechanical stimuli to cells often induce increases in intracellular calcium, affecting the regulation of a variety of cell functions. Although the mechanism of mechanotransduction-induced calcium increases has not been fully resolved, the involvement of mechanosensitive ion channels in the plasma membrane and the endoplasmic reticulum has been reported. Here, we demonstrate that voltage-gated L-type calcium channels play a critical role in the mechanosensitive calcium response in H9c2 rat cardiomyocytes. The intracellular calcium level in H9c2 cells increased in a reproducible dose-dependent manner in response to uniaxial stretching. The stretch-activated calcium response (SICR) completely disappeared in calcium-free medium, whereas thapsigargin and cyclopiazonic acid, inhibitors of sarcoendoplasmic reticulum calcium ATPase, partially reduced the SICR. These findings suggest that both calcium influx across the cell membrane and calcium release from the sarcoendoplasmic reticulum are involved in the SICR. Nifedipine, diltiazem, and verapamil, inhibitors of L-type calcium channels, reduced the SICR in a dose-dependent manner. Furthermore, small interfering RNA against the L-type calcium channel α1c subunit diminished the SICR dramatically. Nifedipine also diminished the mechanosensitivity of Langendorff-perfused rat heart. These results suggest that the SICR in H9c2 cardiomyocytes involves the activation of L-type calcium channels and subsequent calcium release from the sarcoendoplasmic reticulum.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Mecanotransducción Celular , Miocitos Cardíacos/metabolismo , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Células Cultivadas , Diltiazem/farmacología , Relación Dosis-Respuesta a Droga , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Indoles/farmacología , Mecanotransducción Celular/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Nifedipino/farmacología , Ratas , Tapsigargina/farmacología , Verapamilo/farmacología
14.
J Physiol Sci ; 68(4): 387-413, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28573594

RESUMEN

Myocardial heterogeneity is an attribute of the normal heart. We have developed integrative models of cardiomyocytes from the subendocardial (ENDO) and subepicardial (EPI) ventricular regions that take into account experimental data on specific regional features of intracellular electromechanical coupling in the guinea pig heart. The models adequately simulate experimental data on the differences in the action potential and contraction between the ENDO and EPI cells. The modeling results predict that heterogeneity in the parameters of calcium handling and myofilament mechanics in isolated ENDO and EPI cardiomyocytes are essential to produce the differences in Ca2+ transients and contraction profiles via cooperative mechanisms of mechano-calcium-electric feedback and may further slightly modulate transmural differences in the electrical properties between the cells. Simulation results predict that ENDO cells have greater sensitivity to changes in the mechanical load than EPI cells. These data are important for understanding the behavior of cardiomyocytes in the intact heart.


Asunto(s)
Modelos Cardiovasculares , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Potenciales de Acción/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Calcio/metabolismo , Cobayas
15.
J Physiol Sci ; 68(2): 153-164, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28105583

RESUMEN

When a cardiac muscle is held in a stretched position, its [Ca2+] transient increases slowly over several minutes in a process known as stress-induced slow increase in intracellular Ca2+ concentration ([Ca2+]i) (SSC). Transient receptor potential canonical (TRPC) 3 forms a non-selective cation channel regulated by the angiotensin II type 1 receptor (AT1R). In this study, we investigated the role of TRPC3 in the SSC. Isolated mouse ventricular myocytes were electrically stimulated and subjected to sustained stretch. An AT1R blocker, a phospholipase C inhibitor, and a TRPC3 inhibitor suppressed the SSC. These inhibitors also abolished the observed SSC-like slow increase in [Ca2+]i induced by angiotensin II, instead of stretch. Furthermore, the SSC was not observed in TRPC3 knockout mice. Simulation and immunohistochemical studies suggest that sarcolemmal TRPC3 is responsible for the SSC. These results indicate that sarcolemmal TRPC3, regulated by AT1R, causes the SSC.


Asunto(s)
Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Canales Catiónicos TRPC/metabolismo , Angiotensina II/farmacología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos
16.
Prog Biophys Mol Biol ; 130(Pt B): 264-272, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28645743

RESUMEN

Transient receptor potential (TRP) channels constitute a large family of versatile multi-signal transducers. In particular, TRP canonical (TRPC) channels are known as receptor-operated, non-selective cation channels. TRPC3 and TRPC6, two members in the TRPC family, are highly expressed in the heart, and participate in the pathogenesis of cardiac hypertrophy and heart failure as a pathological response to chronic mechanical stress. In the pathological response, myocardial stretch increases intracellular Ca2+ levels and activates nuclear factor of activated T cells to induce cardiac hypertrophy. Recent studies have revealed that TRPC3 and TRPC6 also contribute to the physiological stretch-induced slow force response (SFR), a slow increase in the Ca2+ transient and twitch force during stretch. In the physiological response, a stretch-induced increase in intracellular Ca2+ mediated by TRPC3 and TRPC6 causes the SFR. We here overview experimental evidence of the involvement of TRPC3 and TRPC6 in cardiac physiology and pathophysiology in response to stretch.


Asunto(s)
Corazón/fisiología , Corazón/fisiopatología , Miocardio/metabolismo , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6/metabolismo , Animales , Humanos
17.
Prog Biophys Mol Biol ; 130(Pt B): 315-322, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28668597

RESUMEN

Mitochondria are an important source of reactive oxygen species (ROS). Although it has been reported that myocardial stretch increases cellular ROS production by activating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), referred to as X-ROS signalling, the involvement of mitochondria in X-ROS is not clear. Mitochondria are organelles that generate adenosine triphosphate (ATP) for cellular energy needs, which are mechanical-load-dependent. Therefore, it would not be surprising if these organelles had mechano-sensitive functions associated with stretch-induced ROS production. In the present study, we investigated the relation between X-ROS and mitochondrial stretch-sensitive responses in isolated mouse cardiac myocytes. The cells were subjected to 10% axial stretch using computer-controlled, piezo-manipulated carbon fibres attached to both cell ends. Cellular ROS production and mitochondrial membrane potential (Δψm) were assessed optically by confocal microscopy. The axial stretch increased ROS production and hyperpolarised Δψm. Treatment with a mitochondrial metabolic uncoupler, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), at 0.5 µM did not suppress stretch-induced ROS production, whereas treatment with a respiratory Complex III inhibitor, antimycin A (5 µM), blunted the response. Although NOX inhibition by apocynin abrogated the stretch-induced ROS production, it did not suppress stretch-induced hyperpolarisation of Δψm. These results suggest that stretch causes activation of the respiratory chain to hyperpolarise Δψm, followed by NOX activation, which increases ROS production.


Asunto(s)
Fenómenos Mecánicos , Mitocondrias/metabolismo , Miocitos Cardíacos/citología , Animales , Fenómenos Biomecánicos , Potencial de la Membrana Mitocondrial , Ratones , Especies Reactivas de Oxígeno/metabolismo
18.
Prog Biophys Mol Biol ; 130(Pt B): 323-332, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28571718

RESUMEN

The electrical and mechanical functions of cardiomyocytes differ in relation to the spatial locations of cells in the ventricular wall. This physiological heterogeneity may change under pathophysiological conditions, providing substrates for arrhythmia and contractile dysfunctions. Previous studies have reported distinctions in the electrophysiological and mechanical responses to ischemia of unloaded subendocardial (ENDO) and subepicardial (EPI) single cardiomyocytes. In this paper, we briefly recapitulated the available experimental data on the ischemia effects on the transmural cellular gradient in the heart ventricles and for the first time evaluated the preload-dependent changes in passive and active forces in ENDO and EPI cardiomyocytes isolated from mouse hearts subjected to simulated ischemia. Combining the results obtained in mechanically loaded contracting cardiomyocytes with data from previous studies, we showed that left ventricular ENDO and EPI cardiomyocytes are different in their mechanical responses to metabolic inhibition. Simulated ischemia showed opposite effects on the stiffness of ENDO and EPI cells and greatly prolonged the time course of contraction in EPI cells than in ENDO cells, thereby changing the normal transmural gradient in the cellular mechanics.


Asunto(s)
Fenómenos Mecánicos , Isquemia Miocárdica/patología , Miocitos Cardíacos/patología , Animales , Fenómenos Biomecánicos , Cinética , Ratones
19.
Cardiovasc Res ; 113(10): 1243-1255, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28898995

RESUMEN

AIMS: Transient receptor potential cation channel subfamily melastatin member 4 (TRPM4), a Ca2+-activated nonselective cation channel abundantly expressed in the heart, has been implicated in conduction block and other arrhythmic propensities associated with cardiac remodelling and injury. The present study aimed to quantitatively evaluate the arrhythmogenic potential of TRPM4. METHODS AND RESULTS: Patch clamp and biochemical analyses were performed using expression system and an immortalized atrial cardiomyocyte cell line (HL-1), and numerical model simulation was employed. After rapid desensitization, robust reactivation of TRPM4 channels required high micromolar concentrations of Ca2+. However, upon evaluation with a newly devised, ionomycin-permeabilized cell-attached (Iono-C/A) recording technique, submicromolar concentrations of Ca2+ (apparent Kd = ∼500 nM) were enough to activate this channel. Similar submicromolar Ca2+ dependency was also observed with sharp electrode whole-cell recording and in experiments coexpressing TRPM4 and L-type voltage-dependent Ca2+ channels. Numerical simulations using a number of action potential (AP) models (HL-1, Nygren, Luo-Rudy) incorporating the Ca2+- and voltage-dependent gating parameters of TRPM4, as assessed by Iono-C/A recording, indicated that a few-fold increase in TRPM4 activity is sufficient to delay late AP repolarization and further increases (≥ six-fold) evoke early afterdepolarization. These model predictions are consistent with electrophysiological data from angiotensin II-treated HL-1 cells in which TRPM4 expression and activity were enhanced. CONCLUSIONS: These results collectively indicate that the TRPM4 channel is activated by a physiological range of Ca2+ concentrations and its excessive activity can cause arrhythmic changes. Moreover, these results demonstrate potential utility of the first AP models incorporating TRPM4 gating for in silico assessment of arrhythmogenicity in remodelling cardiac tissue.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/metabolismo , Simulación por Computador , Atrios Cardíacos/metabolismo , Frecuencia Cardíaca , Modelos Cardiovasculares , Miocitos Cardíacos/metabolismo , Análisis Numérico Asistido por Computador , Canales Catiónicos TRPM/metabolismo , Potenciales de Acción/efectos de los fármacos , Angiotensina II/farmacología , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Señalización del Calcio , Células HEK293 , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Cinética , Ratones , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Placa-Clamp , Periodo Refractario Electrofisiológico , Canales Catiónicos TRPM/genética
20.
J Clin Invest ; 127(1): 383-401, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27918308

RESUMEN

Myocardial infarction (MI) results in the generation of dead cells in the infarcted area. These cells are swiftly removed by phagocytes to minimize inflammation and limit expansion of the damaged area. However, the types of cells and molecules responsible for the engulfment of dead cells in the infarcted area remain largely unknown. In this study, we demonstrated that cardiac myofibroblasts, which execute tissue fibrosis by producing extracellular matrix proteins, efficiently engulf dead cells. Furthermore, we identified a population of cardiac myofibroblasts that appears in the heart after MI in humans and mice. We found that these cardiac myofibroblasts secrete milk fat globule-epidermal growth factor 8 (MFG-E8), which promotes apoptotic engulfment, and determined that serum response factor is important for MFG-E8 production in myofibroblasts. Following MFG-E8-mediated engulfment of apoptotic cells, myofibroblasts acquired antiinflammatory properties. MFG-E8 deficiency in mice led to the accumulation of unengulfed dead cells after MI, resulting in exacerbated inflammatory responses and a substantial decrease in survival. Moreover, MFG-E8 administration into infarcted hearts restored cardiac function and morphology. MFG-E8-producing myofibroblasts mainly originated from resident cardiac fibroblasts and cells that underwent endothelial-mesenchymal transition in the heart. Together, our results reveal previously unrecognized roles of myofibroblasts in regulating apoptotic engulfment and a fundamental importance of these cells in recovery from MI.


Asunto(s)
Antígenos de Superficie/metabolismo , Apoptosis , Transición Epitelial-Mesenquimal , Proteínas de la Leche/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miofibroblastos/metabolismo , Animales , Antígenos de Superficie/genética , Supervivencia Celular/genética , Masculino , Ratones , Ratones Noqueados , Proteínas de la Leche/genética , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/patología , Miofibroblastos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA