Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Commun Signal ; 21(1): 171, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430307

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) harbor a plethora of different biomolecules, which they can transport across cells. In cancer, tumor-derived EVs thereby support the creation of a favorable tumor microenvironment. So far, EV uptake and cargo delivery into target cells have been regarded as the main mechanisms for the pro-tumoral function of EVs. To test this hypothesis, we investigated the fate of the oncogenic transmembrane Wnt tyrosine kinase-like orphan receptor 1 and 2 (ROR1, ROR2) delivered via distinct EV subpopulations to breast cancer cells and aimed to unravel their impact on tumor progression. METHODS: EVs were isolated by differential ultracentrifugation from cell culture supernatant as well as plasma samples from healthy individuals (n = 27) and breast cancer patients (n = 41). EVs were thoroughly characterized by electron microscopy, nanoparticle tracking analysis, immunoblot, and flow cytometry. ROR transfer to target cells was observed using microscopy-based assays and biodistribution experiments were conducted in syngeneic mice. EV impact on cancer cell migration and invasion was tested in functional assays. RESULTS: We observed that the supernatant of ROR-overexpressing cells was sufficient for transferring the receptors to ROR-negative cells. Analyzing the secretome of the ROR-overexpressing cells, we detected a high enrichment of ROR1/2 on large and small EVs, but not on large oncosomes. Interestingly, the majority of ROR-positive EVs remained attached to the target cell surface after 24 h of stimulation and was quickly removed by treatment with trypsin. Nonetheless, ROR-positive EVs increased migration and invasion of breast cancer cells, even after chemically inhibiting EV uptake, in dependence of RhoA downstream signaling. In vivo, ROR-depleted EVs tended to distribute less into organs prone for the formation of breast cancer metastases. ROR-positive EVs were also significantly elevated in the plasma of breast cancer patients and allowed to separate them from healthy controls. CONCLUSIONS: The oncogenic Wnt receptors ROR1/2 are transferred via EVs to the surface of ROR-negative cancer cells, in which they induce an aggressive phenotype supporting tumor progression. Video Abstract.


Asunto(s)
Vesículas Extracelulares , Neoplasias Cutáneas , Animales , Ratones , Proteínas Tirosina Quinasas , Distribución Tisular , Microambiente Tumoral , Melanoma Cutáneo Maligno
2.
Cancers (Basel) ; 15(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36831648

RESUMEN

Extracellular vesicles (EVs) are secreted by all living cells and are ubiquitous in every human body fluid. They are quite heterogeneous with regard to biogenesis, size, and composition, yet always reflect their parental cells with their cell-of-origin specific cargo loading. Since numerous studies have demonstrated that EV-associated proteins, nucleic acids, lipids, and metabolites can represent malignant phenotypes in cancer patients, EVs are increasingly being discussed as valuable carriers of cancer biomarkers in liquid biopsy samples. However, the lack of standardized and clinically feasible protocols for EV purification and characterization still limits the applicability of EV-based cancer biomarker analysis. This review first provides an overview of current EV isolation and characterization techniques that can be used to exploit patient-derived body fluids for biomarker quantification assays. Secondly, it outlines promising tumor-specific EV biomarkers relevant for cancer diagnosis, disease monitoring, and the prediction of cancer progression and therapy resistance. Finally, we summarize the advantages and current limitations of using EVs in liquid biopsy with a prospective view on strategies for the ongoing clinical implementation of EV-based biomarker screenings.

3.
Cancer Lett ; 482: 19-32, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32145345

RESUMEN

With the development of potent and selective inhibitors of MCL-1 (S63845) and BCL-XL (A-1331852) novel cancer treatment options have emerged. BCL-2 family proteins are important regulators of apoptosis in pediatric solid tumors. In the current study, we discover that rhabdomyosarcoma, Ewing sarcoma, osteosarcoma and neuroblastoma cell lines are co-dependent on BCL-XL and MCL-1 for survival. A-1331852/S63845 co-treatment, but not combinations of either inhibitor with ABT-199, synergistically induces rapid intrinsic apoptosis in vitro and demonstrates efficiency in an in vivo embryonic chicken model of rhabdomyosarcoma. Interestingly, A-1331852/S63845-induced apoptosis is BAX/BAK-dependent and mediated by displacement of BAK from BCL-XL and MCL-1, respectively. Moreover, BAK interacts with BAX to build a pore-forming complex in the outer mitochondrial membrane, leading to loss of mitochondrial outer membrane potential and caspase activation. Furthermore, in RD cells A-1331852/S63845 co-treatment disrupts BIM and NOXA in their interactions with BCL-XL and MCL-1, respectively, thereby contributing to apoptosis. Altogether, this study is the first to demonstrate the potency of A-1331852/S63845 in pediatric solid tumor cells and to describe the molecular mechanisms of A-1331852/S63845 co-treatment underlining the potential of BCL-XL and MCL-1 inhibition as treatment regime.


Asunto(s)
Benzotiazoles/farmacología , Isoquinolinas/farmacología , Neuroblastoma/metabolismo , Osteosarcoma/metabolismo , Pirimidinas/farmacología , Rabdomiosarcoma/metabolismo , Sarcoma de Ewing/metabolismo , Tiofenos/farmacología , Animales , Benzotiazoles/uso terapéutico , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Embrión de Pollo , Niño , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Isoquinolinas/uso terapéutico , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neuroblastoma/tratamiento farmacológico , Osteosarcoma/tratamiento farmacológico , Pirimidinas/uso terapéutico , Rabdomiosarcoma/tratamiento farmacológico , Sarcoma de Ewing/tratamiento farmacológico , Tiofenos/uso terapéutico , Proteína bcl-X/metabolismo
4.
Sci Rep ; 10(1): 19079, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154469

RESUMEN

Zinc finger proteins (ZNF) are a large group of transcription factors with diverse functions. We recently discovered that endothelial cells harbour a specific mechanism to limit the action of ZNF354C, whose function in endothelial cells is unknown. Given that ZNF354C has so far only been studied in bone and tumour, its function was determined in endothelial cells. ZNF354C is expressed in vascular cells and localises to the nucleus and cytoplasm. Overexpression of ZNF354C in human endothelial cells results in a marked inhibition of endothelial sprouting. RNA-sequencing of human microvascular endothelial cells with and without overexpression of ZNF354C revealed that the protein is a potent transcriptional repressor. ZNF354C contains an active KRAB domain which mediates this suppression as shown by mutagenesis analysis. ZNF354C interacts with dsDNA, TRIM28 and histones, as observed by proximity ligation and immunoprecipitation. Moreover, chromatin immunoprecipitation revealed that the ZNF binds to specific endothelial-relevant target-gene promoters. ZNF354C suppresses these genes as shown by CRISPR/Cas knockout and RNAi. Inhibition of endothelial sprouting by ZNF354C is dependent on the amino acids DV and MLE of the KRAB domain. These results demonstrate that ZNF354C is a repressive transcription factor which acts through a KRAB domain to inhibit endothelial angiogenic sprouting.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Neovascularización Fisiológica , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Sistemas CRISPR-Cas , Células Cultivadas , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Histonas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mutagénesis Sitio-Dirigida , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Neovascularización Fisiológica/genética , Regiones Promotoras Genéticas , ARN Interferente Pequeño/genética , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA