Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Anal At Spectrom ; 38(5): 1135-1145, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37180679

RESUMEN

One widely utilised method to reduce spectral interferences for measurements using inductively coupled plasma mass spectrometry (ICP-MS) is to employ the use of a reaction cell gas. Nitrous oxide (N2O) is a highly reactive gas typically used for mass-shifting only target analytes to a higher mass-to-charge ratio with increased sensitivity (e.g. +16, +32, +48 amu for monoxide, dioxide, and trioxide product ions respectively). Traditionally, the use of N2O was limited to selected applications due to the creation of new interferences that also interfere with the detected masses of interest. However, with the advent of inductively coupled plasma tandem mass spectrometry (ICP-MS/MS), the use of N2O has gained more traction, with a growing number of publications in recent years. Here, a comprehensive study of the use of N2O for the determination of 73 elements has been conducted, with a comparison to the most widely used mass-shift method using oxygen (O2) as a reaction gas. In total, 59 elements showed improved sensitivity when performing mass-shift with N2O compared to O2, with 8 elements showing no reaction with either gas. Additionally, N2O demonstrated a collisional focusing effect for 36 elements when measuring on-mass. This effect was not observed using O2. Monitoring asymmetric charge transfer reactions with N2O highlighted 14 elements, primarily non-metals and semi-metals, that enter the gas cell as metastable ions and could be used as an alternative mass-shift option. The results from this study highlight the high versatility of N2O as a reaction cell gas for routine ICP-MS/MS measurements.

2.
Anal Bioanal Chem ; 415(6): 1159-1172, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36624195

RESUMEN

Seven plant certified reference materials (NIST SRM1515 Apple Leaves, NIST SRM1547 Peach Leaves, BCR-129 Hay Powder, BCR-670 Aquatic Plant, GBW07603 Bush Twigs and Leaves, GBW10015 Spinach Leaves and NCS ZC73036a Green Tea) were analysed for their mass fractions of 48 elements by inductively coupled plasma tandem-mass spectrometry (ICP-MS/MS): Li, Be, Na, Mg, Al, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Nb, Mo, Ag, Cd, Sb, Te, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ta, Tl, Pb, Bi, Th, U. Special focus was put on the determination of technology-critical elements (TCEs), to which, e.g. Li, Be, Ga, Ge, Nb, Sb, Ta, Tl, Bi, and the rare-earth elements (REEs, lanthanides and Y) are counted. Closed-vessel microwave digestion was performed using HNO3, H2O2 and HBF4. The average bias for certified values is - 1% ± 13% (SD). Limits of detection (xL) in the measured solutions lie between 13 fg g-1 (Tb) and 52 ng g-1 (Ca). This article seeks to provide an optimised measurement procedure for the determination of element mass fractions of emerging importance in environmental samples, which are challenging to analyse with more traditional techniques such as single-quad ICP-MS. In addition, it aims to improve the characterisation of commonly used plant reference materials by providing mass fraction data for rarely studied elements.

3.
Anal Bioanal Chem ; 415(2): 255-268, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36136113

RESUMEN

The potential of enriched Pb (204Pb) was assessed to monitor pathways of trace levels of Pb in the pg range within the human body via isotope pattern variation in situations where natural lead cannot be used as a tracer due to regulatory limitations. Isotope ratio measurements were accomplished by means of (multi-collector) inductively coupled plasma mass spectrometry including a comparison of single and multi-collector ICP-MS for low-level 204Pb assessment. Isotopic pattern results from a blend of a large quantity of the element with a natural isotopic composition and an enriched stable isotope at orders of magnitude lower levels pose a nontrivial analytical problem. Isotope pattern deconvolution was successfully applied as mathematical tool based on multiple linear regressions. The method allowed for deconvolving the isotope pattern from measured isotope ratios without knowing the quantities of different isotope sources incorporated and mixed into the sample at levels of < 1 pg 204Pb/g blood. The objective of this manuscript is to evaluate and summarize the analytical aspects for Pb isotope pattern deconvolution based on the results of a clinical trial, where a 204Pb-enriched isotope tracer was applied to investigate the bioavailability of orally applied Pb along with purified clinoptilolite tuff as potential supplement. This unique approach allows to reduce tracer amounts to harmless levels to human health, which are in accordance with the legal regulative to study enrichment levels of < 0.01% in human blood.


Asunto(s)
Isótopos , Plomo , Humanos , Espectrometría de Masas/métodos , Isótopos/análisis , Disponibilidad Biológica , Suplementos Dietéticos/análisis
4.
Anal Chem ; 94(16): 6338-6346, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35427118

RESUMEN

A method using diffusive gradients in thin films (DGT) for the accurate quantification of trace-level (µg L-1) Sr and Pb concentrations and isotope ratios [δSRM 987(87Sr/86Sr) and δSRM 981(207Pb/206Pb)] in labile, bioavailable element fractions in soils is reported. The method is based on a novel poly(tetrafluoroethylene) (PTFE) membrane binding layer with combined di(2-ethyl-hexyl)phosphoric acid (HDEHP) and 4,4'(5')-bis-t-butylcyclohexano-18-crown-6 (crown-ether) functionality with high selectivity for Sr and Pb (TK100 membrane). Laboratory evaluation of the TK100 DGT showed linear uptake of Sr over time (2-24 h) up to very high Sr mass loadings on TK100 membranes (288 µg cm-2) and effective performance in the range of pH (3.9-8.2), ionic strength (0.001-0.1 mol L-1), and cation competition (50-160 mg L-1 Ca in a synthetic soil solution matrix) of environmental interest. Selective three-step elution of TK100 membranes using hydrochloric acid allowed us to obtain purified Sr and Pb fractions with adequate (≥75%) recovery and quantitative (≥96%) matrix reduction. Neither DGT-based sampling itself nor selective elution or mass loading effects caused significant isotopic fractionation. Application of TK100 DGT in natural soils and comparison with conventional approaches of bioavailability assessment demonstrated the method's unique capability to obtain information on Sr and Pb resupply dynamics and isotopic variations with low combined uncertainty within a single sampling step.


Asunto(s)
Contaminantes del Suelo , Suelo , Monitoreo del Ambiente/métodos , Isótopos , Plomo/química , Contaminantes del Suelo/análisis , Estroncio/química
5.
Anal Bioanal Chem ; 414(25): 7495-7502, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35641642

RESUMEN

In inductively coupled plasma mass spectrometry, the most abundant Ca isotope (40Ca) suffers from isobaric interference with argon, hindering the potential for low detection limits of Ca. A powerful approach is to remove the interference by using a reaction gas in a reaction cell. Ammonia (NH3) has proven to be an effective reaction gas by process of a charge transfer reaction. However, NH3 is highly corrosive and toxic and cannot remove isobaric 40 K. Therefore, this work proposes the use of nitrous oxide (N2O) to mass shift the target analyte 40Ca to 40Ca16O+ as a non-corrosive and non-toxic alternative. Instrument performance testing demonstrated that N2O was capable of reaching equivalent detection limits (0.015 ng g-1) and background equivalence concentrations (0.041 ng g-1) to that of NH3 and limited by the blank only. Further investigation of matrix interferences with synthetic standards highlighted that the N2O approach supports the separation of potassium (K) and magnesium (Mg)-based interferences at tested concentrations of more than 600 times and almost 800 times higher than Ca respectively, whereas NH3 was found to only support the removal of Mg. This work highlights a clear advantage of N2O for low-level Ca determinations with high matrix loads, as well as compatibility with other instrumentation sensitive to corrosion that supports reaction cell technology.


Asunto(s)
Óxido Nitroso , Espectrometría de Masas en Tándem , Amoníaco , Argón , Isótopos , Magnesio , Potasio , Espectrometría de Masas en Tándem/métodos
6.
J Wildl Manage ; 86(6): e22248, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36246203

RESUMEN

Piscivorous birds in aquatic ecosystems exert predation pressure on fish populations. But the site-specific impact on fish populations, including stocked and commercially used fish species, remains disputed. One of the key questions for the management of piscivorous birds and fish is determining the origin of prey and thus which fish populations are targeted by the birds. We addressed this question by provenancing otoliths (earstones) of fish obtained from regurgitated pellets of piscivorous birds by otolith microchemistry analysis. We retrieved otoliths from regurgitated pellets of great cormorants (Phalacrocorax carbo sinensis) collected every 2 weeks for 2 years from breeding and roosting colonies at Chiemsee in Bavaria, Germany, and classified them according to family or species. We collected water samples from Chiemsee and potential surrounding foraging grounds. We measured the strontium (Sr) 87Sr/86Sr isotope ratio and Sr mass fraction of water and otoliths using (laser ablation) inductively coupled plasma-mass spectrometry. We assigned otoliths from regurgitated pellets to habitat clusters of origin by comparing the Sr isotopic and elemental composition of otoliths and waterbodies. In 36% of cormorant pellets collected at Chiemsee, prey was assigned to waterbodies distinct from Chiemsee. Furthermore, cormorants used different foraging sites during 1 day. Microchemical provenancing of prey remains can contribute to identifying foraging sites of piscivorous birds and to what extend the birds switched among foraging sites.

7.
Anal Bioanal Chem ; 411(3): 565-580, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30511253

RESUMEN

This paper presents a combination of elemental and isotopic spatial distribution imaging with near-infrared hyperspectral imaging (NIR-HSI) to evaluate the diagenetic status of skeletal remains. The aim is to assess how areas with biogenic n(87Sr)/n(86Sr) isotope-amount ratios may be identified in bone material, an important recorder complementary to teeth. Elemental (C, P, Ca, Sr) and isotopic (n(87Sr)/n(86Sr)) imaging were accomplished via laser ablation (LA) coupled in a split stream to a quadrupole inductively coupled plasma mass spectrometer (ICP-QMS) and a multicollector inductively coupled plasma mass spectrometer (MC ICP-MS) (abbreviation for the combined method LASS ICP-QMS/MC ICP-MS). Biogenic areas on the bone cross section, which remained unaltered by diagenetic processes, were localized using chemical indicators (I(C)/I(Ca) and I(C) × 10/I(P) intensity ratios) and NIR-HSI at a wavelength of 1410 nm to identify preserved collagen. The n(87Sr)/n(86Sr) isotope signature analyzed in these areas was in agreement with the biogenic bulk signal revealed by solubility profiling used as an independent method for validation. Elevated C intensities in the outer rim of the bone, caused by either precipitated secondary minerals or adsorbed humic materials, could be identified as indication for diagenetic alteration. These areas also show a different n(87Sr)/n(86Sr) isotopic composition. Therefore, the combination of NIR-HSI and LASS ICP-QMS/MC ICP-MS allows for the determination of preserved biogenic n(87Sr)/n(86Sr) isotope-amount ratios, if the original biogenic material has not been entirely replaced by diagenetic material. Graphical abstract ᅟ.


Asunto(s)
Huesos/química , Rayos Láser , Espectrometría de Masas/métodos , Imagen Molecular/métodos , Espectroscopía Infrarroja Corta/métodos , Isótopos de Estroncio/química , Animales , Humanos , Sustancias Húmicas/análisis , Reproducibilidad de los Resultados
9.
Anal Bioanal Chem ; 408(2): 369-85, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26446900

RESUMEN

Analytical ecogeochemistry is an evolving scientific field dedicated to the development of analytical methods and tools and their application to ecological questions. Traditional stable isotopic systems have been widely explored and have undergone continuous development during the last century. The variations of the isotopic composition of light elements (H, O, N, C, and S) have provided the foundation of stable isotope analysis followed by the analysis of traditional geochemical isotope tracers (e.g., Pb, Sr, Nd, Hf). Questions in a considerable diversity of scientific fields have been addressed, many of which can be assigned to the field of ecogeochemistry. Over the past 15 years, other stable isotopes (e.g., Li, Zn, Cu, Cl) have emerged gradually as novel tools for the investigation of scientific topics that arise in ecosystem research and have enabled novel discoveries and explorations. These systems are often referred to as non-traditional isotopes. The small isotopic differences of interest that are increasingly being addressed for a growing number of isotopic systems represent a challenge to the analytical scientist and push the limits of today's instruments constantly. This underlines the importance of a metrologically sound concept of analytical protocols and procedures and a solid foundation of data processing strategies and uncertainty considerations before these small isotopic variations can be interpreted in the context of applied ecosystem research. This review focuses on the development of isotope research in ecogeochemistry, the requirements for successful detection of small isotopic shifts, and highlights the most recent and innovative applications in the field.

10.
Anal Bioanal Chem ; 408(2): 351-67, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26472320

RESUMEN

This paper critically reviews the state-of-the-art of isotope amount ratio measurements by solution-based multi-collector inductively coupled plasma mass spectrometry (MC ICP-MS) and presents guidelines for corresponding data reduction strategies and uncertainty assessments based on the example of n((87)Sr)/n((86)Sr) isotope ratios. This ratio shows variation attributable to natural radiogenic processes and mass-dependent fractionation. The applied calibration strategies can display these differences. In addition, a proper statement of uncertainty of measurement, including all relevant influence quantities, is a metrological prerequisite. A detailed instructive procedure for the calculation of combined uncertainties is presented for Sr isotope amount ratios using three different strategies of correction for instrumental isotopic fractionation (IIF): traditional internal correction, standard-sample bracketing, and a combination of both, using Zr as internal standard. Uncertainties are quantified by means of a Kragten spreadsheet approach, including the consideration of correlations between individual input parameters to the model equation. The resulting uncertainties are compared with uncertainties obtained from the partial derivatives approach and Monte Carlo propagation of distributions. We obtain relative expanded uncertainties (U rel; k = 2) of n((87)Sr)/n((86)Sr) of < 0.03 %, when normalization values are not propagated. A comprehensive propagation, including certified values and the internal normalization ratio in nature, increases relative expanded uncertainties by about factor two and the correction for IIF becomes the major contributor.

11.
Sci Total Environ ; 934: 173364, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38777068

RESUMEN

Over the recent decades, technological advancements have led to a rise in the use of so-called technology-critical elements (TCEs). Environmental monitoring of TCEs forms the base to assess whether this leads to increased anthropogenic release and to public health implications. This study employs an exploratory approach to investigate the distribution of the TCEs Li, Be, V, Ga, Ge, Nb, Sb, Te, Ta, Tl, Bi and the REYs (rare-earth elements including yttrium) in urban aerosol in the city of Vienna, Austria. Leaf samples (n = 292) from 8 plant species and two green facades and water samples (n = 18) from the Wienfluss river were examined using inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). Surface dust contributions were assessed by washing one replicate of each leaf sample and analysing the washing water (n = 146). The impacts of sampling month, plant species and storey level on elemental distribution were assessed by statistical tools and generative deep neural network modelling. Higher TCE levels, including Li, V, Ga, Ge, Tl, Bi, and the REYs, were found in the winter months, likely due to the use of de-icing materials and fossil fuel combustion. A. millefolium and S. heufleriana displayed the highest levels of Li and Ge, respectively. In addition, increased elemental accumulation at lower storeys was observed, including Be, Sb, Bi and the REYs, indicating greater atmospheric dust deposition and recirculation closer to ground level. The results suggest a broad association of TCE levels with urban dust. This study enhances the current understanding of TCE distribution in urban settings and underscores the importance of their inclusion in pollution monitoring. It highlights the complex interplay of human activities, urban infrastructure, and environmental factors, offering valuable insights for managing urban environmental health risks and underlining the need for comprehensive urban ecosystem studies.

12.
Insects ; 14(11)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37999073

RESUMEN

Recently, the One Health concept, which recognizes the interconnectedness of environmental, animal, and human health, has gained popularity. To collect data on environmental pollutants potentially harmful to human health over time, researchers often turn to natural organisms known as biomonitors. Honey bees, in particular, prove to be exceptionally valuable biomonitors due to their capacity to accumulate pollutants from the air, soil, and water within a specific radius during their foraging trips. This systematic literature review summarizes the previous application of the bee species Apis mellifera in pollutant monitoring in articles published during the period of 2010-2020. Nineteen studies were included in this systematic literature review. Of these studies, the majority (n = 15) focused on the detection of heavy metals in honey bees and beehive products, while 4 studies focused on air pollution by polycyclic aromatic hydrocarbons or particulate matter. The matrix most often applied was the whole honey bee. The included studies demonstrated that honey bees and hive products deliver quantitative and qualitative information about specific pollutants. In this regard, the whole honey bee was found to be the most reliable biomonitor. We found that the included studies differed in design and the methods used. Standardized studies could foster a more consistent interpretation of the levels detected in beehive matrices from an environmental health perspective.

13.
Anal Chim Acta ; 1212: 339910, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35623784

RESUMEN

Visualization and quantification of corrosion processes is essential in materials research. Here we present a new approach for 2D spatiotemporal imaging of metal corrosion dynamics in situ. The approach combines time-integrated Mg2+ flux imaging by diffusive gradients in thin films laser ablation inductively coupled plasma mass spectrometry (DGT LA-ICP-MS) and near real-time pH imaging by planar optodes. The parallel assessment of Mg2+ flux and pH distributions on a fine-structured, bare Mg alloy (b-WE43) showed intense Mg dissolution with Mg2+ flux maxima up to 11.9 ng cm-2 s-1 and pH increase >9 during initial corrosion (≤15 min) in aqueous NaNO3 solution (c = 0.01 mol L-1). The techniques visualized the lower initial corrosion rate in buffered synthetic body fluid (Hank's balanced salt solution; pH 7.6) compared to unbuffered NaNO3 (pH 6.0), but precise localization of Mg corrosion remains challenging under these conditions. To further demonstrate the capability of DGT LA-ICP-MS for spatiotemporal metal flux imaging at the microscale, a coated Mg alloy (c-WE43) with lower reactivity was deployed for ≤120 min. The high spatial resolution (∼10 µm × 80 µm) and low limits of detection (≤0.04 ng cm-2 s-1, t = 60 min) enabled accurate in situ localization and quantification (Urel = 20%, k = 2) of distinct Mg2+ flux increase, showing micro-confined release of Mg2+ from surface coating defects on c-WE43 samples. The presented approach can be extended to other metal species and applied to other materials to better understand corrosion processes and improve material design in technological engineering.


Asunto(s)
Terapia por Láser , Magnesio , Aleaciones , Corrosión , Difusión
14.
Anal Bioanal Chem ; 408(2): 341-3, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26446901
15.
Sci Rep ; 11(1): 14796, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285282

RESUMEN

Lead exposure can cause substantial organ damage. Enteral lead absorption may be reduced by concomitant intake of clinoptilolite tuff, a zeolite from natural sources. This study aimed to assess the effect of purified clinoptilolite tuff (G-PUR) on enteral lead uptake in adults using stable lead isotope 204Pb as a tracer. In this randomized, placebo-controlled, double-blind, parallel-group study, 42 healthy participants were randomized to receive oral G-PUR 2.0 g, 2 * 2.0 g, or placebo, together with 2.5 µg of 204Pb in water. The enrichment of 204Pb caused by the tracer in blood and urine was measured by mass spectrometry. G-PUR was well tolerated. The mean maximum 204Pb enrichment of 0.505% of total blood lead was significantly higher (p < 0.0001) in the placebo group compared to G-PUR 2.0 g (0.073%) or G-PUR 2 * 2.0 g (0.057%) group. Normalized 204Pb AUC0-192 was 86.5, 11.9, and 8.5% * h without and with G-PUR 2.0 g, and G-PUR 2 * 2.0 g, respectively (p < 0.0001 vs. placebo). This smaller 204Pb exposure was paralleled by a reduced urinary excretion in subjects receiving G-PUR. Concomitant oral intake of purified clinoptilolite tuff reduced enteral uptake of 204Pb in healthy humans by approximately 90%. The reduced bioavailability is demonstrable by a decrease of 204Pb tracer enrichment in blood and urine.Trial registration: clinicaltrials.gov identifier: NCT04138693, registered 24/10/2019.


Asunto(s)
Intoxicación por Plomo/tratamiento farmacológico , Plomo/farmacocinética , Zeolitas/administración & dosificación , Adulto , Método Doble Ciego , Femenino , Humanos , Plomo/toxicidad , Intoxicación por Plomo/orina , Masculino
16.
Science ; 373(6556): 806-808, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34385399

RESUMEN

Little is known about woolly mammoth (Mammuthus primigenius) mobility and range. Here we use high temporal resolution sequential analyses of strontium isotope ratios along an entire 1.7-meter-long tusk to reconstruct the movements of an Arctic woolly mammoth that lived 17,100 years ago, during the last ice age. We use an isotope-guided random walk approach to compare the tusk's strontium and oxygen isotope profiles to isotopic maps. Our modeling reveals patterns of movement across a geographically extensive range during the animal's ~28-year life span that varied with life stages. Maintenance of this level of mobility by megafaunal species such as mammoth would have been increasingly difficult as the ice age ended and the environment changed at high latitudes.

17.
Sci Total Environ ; 738: 140311, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32806385

RESUMEN

Trace element concentrations in the rhizosphere were quantified to better understand why soil liming often fails to reduce cadmium (Cd) uptake by plants. Maize seedlings were grown on a soil with natural background levels of Cd and zinc (Zn). Soil liming increased soil pH from 4.9 to 6.5 and lowered the soil solution free ion activities by factor 7 (Cd) and 9 (Zn). In contrast, shoot Cd concentrations were unaffected by liming while shoot Zn concentrations were lowered by factor 1.9. Mapping of labile soil trace elements using diffusive gradients in thin films (DGT) in combination with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) revealed an almost complete depletion of Cd in the rhizosphere in all soil treatments, showing that Cd uptake is controlled by diffusion. The flux of Cd from soil to the DGT, with direct contact between the soil and the binding gel, was unaffected by liming whereas it decreased by factor 3 for Zn, closely mimicking the contrasting effects of liming on Cd and Zn bioavailability. This evidence, combined with additional flux data of freshly spiked Cd and Zn isotopes in soil and with modelling, suggests that the diffusive transport of Cd in unsaturated soil is more strongly controlled by the labile adsorbed metal concentration than by its concentration in solution. This is less the case for Zn because of its inherently slower desorption compared to Cd.


Asunto(s)
Contaminantes del Suelo/análisis , Oligoelementos , Cadmio/análisis , Rizosfera , Suelo , Zea mays , Zinc/análisis
18.
Chemosphere ; 257: 127182, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32534293

RESUMEN

The impact of offshore constructions on the marine environment is unknown in many aspects. The application of Al- and Zn-based galvanic anodes as corrosion protection results in the continuous emission of inorganic matter (e.g. >80 kg Al-anode material per monopile foundation and year) into the marine environment. To identify tracers for emissions from offshore wind structures, anode materials (Al-based and Zn-based) were characterized for their elemental and isotopic composition. An acid digestion and analysis method for Al and Zn alloys was adapted and validated using the alloy CRMs ERM®-EB317 (AlZn6CuMgZr) and ERM®-EB602 (ZnAl4Cu1). Digests were measured for their elemental composition by ICP-MS/MS and for their Pb isotope ratios by MC ICP-MS. Ga and In were identified as potential tracers. Moreover, a combined tracer approach of the elements Al, Zn, Ga, Cd, In and Pb together with Pb isotope ratios is suggested for a reliable identification of offshore-wind-farm-induced emissions. In the Al anodes, the mass fractions were found to be >94.4% of Al, >26200 mg kg-1 of Zn, >78.5 mg kg-1 of Ga, >0.255 mg kg-1 of Cd, >143 mg kg-1 of In and >6.7 mg kg-1 of Pb. The Zn anodes showed mass fractions of >2160 mg kg-1 of Al, >94.5% of Zn, >1.31 mg kg-1 of Ga, >254 mg kg-1 of Cd, >0.019 mg kg-1 of In and >14.1 mg kg-1 of Pb. The n(208Pb)/n(206Pb) isotope ratios in Al anodes range from 2.0619 to 2.0723, whereas Zn anodes feature n(208Pb)/n(206Pb) isotope ratios ranging from 2.0927 to 2.1263.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Aleaciones , Aluminio , Corrosión , Electrodos , Isótopos/análisis , Espectrometría de Masas en Tándem , Viento
19.
Commun Biol ; 3(1): 650, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159107

RESUMEN

The Upper Palaeolithic double burial of newborns and the single burial of a ca. 3-month-old infant uncovered at the Gravettian site of Krems-Wachtberg, Austria, are of paramount importance given the rarity of immature human remains from this time. Genome-wide ancient DNA shows that the male infants of the double grave are the earliest reported case of monozygotic twins, while the single grave´s individual was their 3rd-degree male relative. We assessed the individuals´ age at death by applying histological and µCT inspection of the maxillary second incisors (i2) in conjunction with C- and N-isotope ratios and Barium (Ba) intake as biomarker for breastfeeding. The results show that the twins were full-term newborns, and that while individual 2 died at birth, individual 1 survived for about 50 days. The findings show that Gravettian mortuary behaviour also included re-opening of a grave and manipulation of its layout and content.


Asunto(s)
ADN/genética , Gemelos Monocigóticos/genética , Entierro , Historia Antigua , Humanos , Recién Nacido , Paleontología
20.
Sci Total Environ ; 668: 512-523, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-30856563

RESUMEN

The Elbe River has been long considered as one of the most anthropogenically impacted rivers in Europe. Its estuary is characterized by strong tidal effects, continuous dredging and dumping of sediment, and intense ship traffic between the North Sea and the Port of Hamburg. The aim of this study was to elucidate if a combined multi-element fingerprinting and isotopic tracer approach represented a suitable tool to investigate transport and mixing processes of inorganic contaminants within a complex and highly dynamic estuarine environment. A total of 37 surface sediment samples from the tidal Elbe were characterized in a comprehensive survey by determining the mass fractions of 48 elements and the isotopic signatures of stable Sr, Nd and Pb. Statistical data analysis resolved four discrete clusters of sampling locations in the estuary: One cluster upstream of the city of Hamburg, two clusters within the mixing zone between Hamburg and the mouth of the Elbe Estuary and one cluster in the mouth of the Estuary. River sediment entering the estuary carry significantly higher loads of metals (e.g. Cu, Zn, Sb, Cd and Pb), which are rapidly "diluted" by lower elemental mass fractions in marine sediment on a remarkably small regional scale. The cluster within the mouth of the estuary is mainly characterized by extreme isotopic variations of n(208Pb)/n(204Pb) ranging from 38.67 ±â€¯0.15 to 73.86 ±â€¯0.29, beside high mass fractions of U, Th, and some rare-earth elements. Determined Pb isotope ratios are among the highest reported values for terrestrial materials. This study indicates the general potential of combined element fingerprinting and isotope tracer approaches to elucidate processes in complex river systems. Furthermore, it represents an initial characterization of the catchment area of the Elbe River as basis for future studies on river and harbor management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA