RESUMEN
BACKGROUND: Asthma in a mouse model spontaneously resolves after cessation of allergen exposure. We developed a mouse model in which asthma features persisted for 6 months after cessation of allergen exposure. OBJECTIVE: We sought to elucidate factors contributing to the persistence of asthma. METHODS: We used a combination of immunologic, genetic, microarray, and pharmacologic approaches to dissect the mechanism of asthma persistence. RESULTS: Elimination of T cells though antibody-mediated depletion or lethal irradiation and transplantation of recombination-activating gene (Rag1)(-/-) bone marrow in mice with chronic asthma resulted in resolution of airway inflammation but not airway hyperreactivity or remodeling. Elimination of T cells and type 2 innate lymphoid cells (ILC2s) through lethal irradiation and transplantation of Rag2(-/-)γc(-/-) bone marrow or blockade of IL-33 resulted in resolution of airway inflammation and hyperreactivity. Persistence of asthma required multiple interconnected feedback and feed-forward circuits between ILC2s and epithelial cells. Epithelial IL-33 induced ILC2s, a rich source of IL-13. The latter directly induced epithelial IL-33, establishing a positive feedback circuit. IL-33 autoinduced, generating another feedback circuit. IL-13 upregulated IL-33 receptors and facilitated IL-33 autoinduction, thus establishing a feed-forward circuit. Elimination of any component of these circuits resulted in resolution of chronic asthma. In agreement with the foregoing, IL-33 and ILC2 levels were increased in the airways of asthmatic patients. IL-33 levels correlated with disease severity. CONCLUSIONS: We present a critical network of feedback and feed-forward interactions between epithelial cells and ILC2s involved in maintaining chronic asthma. Although T cells contributed to the severity of chronic asthma, they were redundant in maintaining airway hyperreactivity and remodeling.
Asunto(s)
Anticuerpos Bloqueadores/administración & dosificación , Asma/inmunología , Interleucinas/inmunología , Linfocitos/inmunología , Células Th2/inmunología , Traslado Adoptivo , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Remodelación de las Vías Aéreas (Respiratorias)/genética , Alérgenos/inmunología , Animales , Trasplante de Médula Ósea , Hiperreactividad Bronquial/genética , Enfermedad Crónica , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Retroalimentación Fisiológica/efectos de los fármacos , Femenino , Humanos , Inmunidad Innata , Interleucina-13/metabolismo , Interleucina-33 , Depleción Linfocítica , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana EdadRESUMEN
BACKGROUND: TH2 cells can further differentiate into dual-positive TH2/TH17 cells. The presence of dual-positive TH2/TH17 cells in the airways and their effect on asthma severity are unknown. OBJECTIVE: We sought to study dual-positive TH2/TH17 cells in bronchoalveolar lavage (BAL) fluid from asthmatic patients, examine their response to glucocorticoids, and define their relevance for disease severity. METHODS: Bronchoscopy and lavage were performed in 52 asthmatic patients and 25 disease control subjects. TH2 and TH2/TH17 cells were analyzed by using multicolor flow cytometry and confocal immunofluorescence microscopy. Cytokines were assayed by means of ELISA. RESULTS: Dual-positive TH2/TH17 cells were present at a higher frequency in BAL fluid from asthmatic patients compared with numbers seen in disease control subjects. High-level IL-4 production was typically accompanied by high-level IL-17 production and coexpression of GATA3 and retinoic acid receptor-related orphan receptor γt. Increased presence of TH2/TH17 cells was associated with increased IL-17 production in lavage fluid. TH2/TH17 cell counts and IL-17 production correlated with PC20 for methacholine, eosinophil counts, and FEV1. TH2/TH17 cells, unlike TH2 cells, were resistant to dexamethasone-induced cell death. They expressed higher levels of mitogen-activated protein-extracellular signal-regulated kinase kinase 1, a molecule that induces glucocorticoid resistance. On the basis of the dominance of BAL fluid TH2 or TH2/TH17 cells, we identified 3 subgroups of asthma: TH2(predominant), TH2/TH17(predominant), and TH2/TH17(low). The TH2/TH17(predominant) subgroup manifested the most severe form of asthma, whereas the TH2/TH17(low) subgroup had the mildest asthma. CONCLUSION: Asthma is associated with a higher frequency of dual-positive TH2/TH17 cells in BAL fluid. The TH2/TH17(predominant) subgroup of asthmatic patients manifested glucocorticoid resistance in vitro. They also had the greatest airway obstruction and hyperreactivity compared with the TH2(predominant) and TH2/TH17(low) subgroups.