Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34593629

RESUMEN

Approximately 40% of human messenger RNAs (mRNAs) contain upstream open reading frames (uORFs) in their 5' untranslated regions. Some of these uORF sequences, thought to attenuate scanning ribosomes or lead to mRNA degradation, were recently shown to be translated, although the function of the encoded peptides remains unknown. Here, we show a uORF-encoded peptide that exhibits kinase inhibitory functions. This uORF, upstream of the protein kinase C-eta (PKC-η) main ORF, encodes a peptide (uPEP2) containing the typical PKC pseudosubstrate motif present in all PKCs that autoinhibits their kinase activity. We show that uPEP2 directly binds to and selectively inhibits the catalytic activity of novel PKCs but not of classical or atypical PKCs. The endogenous deletion of uORF2 or its overexpression in MCF-7 cells revealed that the endogenously translated uPEP2 reduces the protein levels of PKC-η and other novel PKCs and restricts cell proliferation. Functionally, treatment of breast cancer cells with uPEP2 diminished cell survival and their migration and synergized with chemotherapy by interfering with the response to DNA damage. Furthermore, in a xenograft of MDA-MB-231 breast cancer tumor in mice models, uPEP2 suppressed tumor progression, invasion, and metastasis. Tumor histology showed reduced proliferation, enhanced cell death, and lower protein expression levels of novel PKCs along with diminished phosphorylation of PKC substrates. Hence, our study demonstrates that uORFs may encode biologically active peptides beyond their role as translation regulators of their downstream ORFs. Together, we point to a unique function of a uORF-encoded peptide as a kinase inhibitor, pertinent to cancer therapy.


Asunto(s)
Péptidos/farmacología , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Secuencia de Aminoácidos , Línea Celular Tumoral , Humanos , Sistemas de Lectura Abierta , Péptidos/química , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/química , Especificidad por Sustrato
2.
Nat Immunol ; 12(11): 1105-12, 2011 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-21964608

RESUMEN

Protein kinase C-θ (PKC-θ) translocates to the center of the immunological synapse, but the underlying mechanism and its importance in T cell activation are unknown. Here we found that the V3 domain of PKC-θ was necessary and sufficient for localization to the immunological synapse mediated by association with the coreceptor CD28 and dependent on the kinase Lck. We identified a conserved proline-rich motif in V3 required for association with CD28 and immunological synapse localization. We found association with CD28 to be essential for PKC-θ-mediated downstream signaling and the differentiation of T helper type 2 cells (T(H)2 cells) and interleukin 17-producing helper T cells (T(H)17 cells) but not of T helper type 1 cells (T(H)1 cells). Ectopic expression of V3 sequestered PKC-θ from the immunological synapse and interfered with its functions. Our results identify a unique mode of CD28 signaling, establish a molecular basis for the immunological synapse localization of PKC-θ and indicate V3-based 'decoys' may be therapeutic modalities for T cell-mediated inflammatory diseases.


Asunto(s)
Antígenos CD28/metabolismo , Isoenzimas/metabolismo , Proteína Quinasa C/metabolismo , Subgrupos de Linfocitos T/metabolismo , Células Th17/metabolismo , Células Th2/metabolismo , Secuencias de Aminoácidos/genética , Animales , Antígenos CD28/inmunología , Diferenciación Celular/inmunología , Células Cultivadas , Sinapsis Inmunológicas , Inmunomodulación , Isoenzimas/genética , Isoenzimas/inmunología , Activación de Linfocitos , Ratones , Ratones Noqueados , Dominios Proteicos Ricos en Prolina/genética , Unión Proteica/inmunología , Proteína Quinasa C/genética , Proteína Quinasa C/inmunología , Proteína Quinasa C-theta , Transporte de Proteínas/inmunología , Transducción de Señal/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/patología , Células Th17/inmunología , Células Th17/patología , Células Th2/inmunología , Células Th2/patología
3.
Cell Mol Life Sci ; 80(1): 7, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36495335

RESUMEN

The ZAP70 protein tyrosine kinase (PTK) couples stimulated T cell antigen receptors (TCRs) to their downstream signal transduction pathways and is sine qua non for T cell activation and differentiation. TCR engagement leads to activation-induced post-translational modifications of ZAP70, predominantly by kinases, which modulate its conformation, leading to activation of its catalytic domain. Here, we demonstrate that ZAP70 in TCR/CD3-activated mouse spleen and thymus cells, as well as human Jurkat T cells, is regulated by the peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin A (CypA) and that this regulation is abrogated by cyclosporin A (CsA), a CypA inhibitor. We found that TCR crosslinking promoted a rapid and transient, Lck-dependent association of CypA with the interdomain B region, at the ZAP70 regulatory domain. CsA inhibited CypA binding to ZAP70 and prevented the colocalization of CypA and ZAP70 at the cell membrane. In addition, imaging analyses of antigen-specific T cells stimulated by MHC-restricted antigen-fed antigen-presenting cells revealed the recruitment of ZAP70-bound CypA to the immunological synapse. Enzymatically active CypA downregulated the catalytic activity of ZAP70 in vitro, an effect that was reversed by CsA in TCR/CD3-activated normal T cells but not in CypA-deficient T cells, and further confirmed in vivo by FRET-based studies. We suggest that CypA plays a role in determining the activity of ZAP70 in TCR-engaged T cells and impact on T cell activation by intervening with the activity of multiple downstream effector molecules.


Asunto(s)
Ciclofilina A , Linfocitos T , Ratones , Animales , Humanos , Ciclofilina A/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Activación de Linfocitos , Timo/metabolismo , Proteína Tirosina Quinasa ZAP-70/genética , Proteína Tirosina Quinasa ZAP-70/metabolismo
4.
Glia ; 69(3): 697-714, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33068318

RESUMEN

Alzheimer's disease (AD) is the primary cause of age-related dementia. Pathologically, AD is characterized by synaptic loss, the accumulation of ß-amyloid peptides and neurofibrillary tangles, glial activation, and neuroinflammation. Whereas extensive studies focused on neurons and activation of microglia in AD, the role of astrocytes has not been well-characterized. Protein kinase C (PKC) was also implicated in AD; however, its role in astrocyte activation was not elucidated. Using the 5XFAD mouse model of AD, we show that PKC-eta (PKCη), an astrocyte-specific stress-activated and anti-apoptotic kinase, plays a role in reactive astrocytes. We demonstrate that PKCη staining is highly enriched in cortical astrocytes in a disease-dependent manner and in the vicinity of amyloid-ß peptides plaques. Moreover, activation of PKCη, as indicated by its increased phosphorylation levels, is exhibited mainly in cortical astrocytes derived from adult 5XFAD mice. PKCη activation was associated with elevated levels of reactive astrocytic markers and upregulation of the pro-inflammatory cytokine interleukin 6 (IL-6) compared to littermate controls. Notably, inhibiting the kinase activity of PKCη in 5XFAD astrocyte cultures markedly increased the levels of secreted IL-6-a phenomenon that was also observed in wild-type astrocytes stimulated by inflammatory cytokines (e.g., TNFα, IL-1). Similar increase in the release of IL-6 was also observed upon inhibition of either the mammalian target of rapamycin (mTOR) or the protein phosphatase 2A (PP2A). Our findings suggest that the mTOR-PKCη-PP2A signaling cascade functions as a negative feedback loop of NF-κB-induced IL-6 release in astrocytes. Thus, we identify PKCη as a regulator of neuroinflammation in AD.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Péptidos beta-Amiloides , Animales , Citocinas , Interleucina-6 , Ratones , Enfermedades Neuroinflamatorias , Proteína Quinasa C , Serina-Treonina Quinasas TOR
5.
Semin Cancer Biol ; 48: 36-52, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28571764

RESUMEN

The AGC family of serine/threonine kinases (PKA, PKG, PKC) includes more than 60 members that are critical regulators of numerous cellular functions, including cell cycle and differentiation, morphogenesis, and cell survival and death. Mutation and/or dysregulation of AGC kinases can lead to malignant cell transformation and contribute to the pathogenesis of many human diseases. Members of one subgroup of AGC kinases, the protein kinase C (PKC), have been singled out as critical players in carcinogenesis, following their identification as the intracellular receptors of phorbol esters, which exhibit tumor-promoting activities. This observation attracted the attention of researchers worldwide and led to intense investigations on the role of PKC in cell transformation and the potential use of PKC as therapeutic drug targets in cancer diseases. Studies demonstrated that many cancers had altered expression and/or mutation of specific PKC genes. However, the causal relationships between the changes in PKC gene expression and/or mutation and the direct cause of cancer remain elusive. Independent studies in normal cells demonstrated that activation of PKC is essential for the induction of cell activation and proliferation, differentiation, motility, and survival. Based on these observations and the general assumption that PKC isoforms play a positive role in cell transformation and/or cancer progression, many PKC inhibitors have entered clinical trials but the numerous attempts to target PKC in cancer has so far yielded only very limited success. More recent studies demonstrated that PKC function as tumor suppressors, and suggested that future clinical efforts should focus on restoring, rather than inhibiting, PKC activity. The present manuscript provides some historical perspectives on the tumor promoting function of PKC, reviewing some of the observations linking PKC to cancer progression, and discusses the role of PKC in the pathogenesis of cancer diseases and its potential usage as a therapeutic target.


Asunto(s)
Genes Supresores de Tumor , Neoplasias/patología , Proteína Quinasa C/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Adenosina Trifosfato/metabolismo , Animales , Unión Competitiva , Humanos , Terapia Molecular Dirigida , Neoplasias/enzimología , Neoplasias/terapia , Oligonucleótidos Antisentido/farmacología , Ésteres del Forbol/toxicidad , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/química , Proteína Quinasa C beta/genética , Proteína Quinasa C beta/metabolismo , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo
6.
Biochem Biophys Res Commun ; 509(2): 469-475, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30595380

RESUMEN

PICOT is a ubiquitous protein that has no functional redundant ortholog and is critical for mouse embryonic development. It is involved in the regulation of signal transduction in T lymphocytes and cardiac muscle, and in cellular iron metabolism and biogenesis of Fe/S proteins. However, very little is known about the physiological role of PICOT and its mechanism of action, and on its upstream regulators or downstream target molecules. In attempt to identify new PICOT interaction partners, we adopted the yeast two-hybrid system and screened a Jurkat T cell cDNA library using the full-length human PICOT cDNA as a bait. We found that PICOT interacts with embryonic ectoderm development (EED), a Polycomb Group (PcG) protein that serves as a core component of the Polycomb repressive complex 2 (PRC2) and contributes to the regulation of chromatin remodeling and cell differentiation. Using bead immobilized GST-PICOT and GST-EED fusion proteins in a pull-down assay and reciprocal coimmunoprecipitation studies we demonstrated that the interaction between PICOT and EED also occurs in human Jurkat T cells. In addition, immunofluorescence staining of Jurkat T cells revealed partial colocalization of PICOT and EED, predominantly in the cell nuclei. A pull-down assay using the GST-EED fusion protein and lysates of cells expressing different Myc-tagged truncation products of PICOT revealed that binding of EED is mediated by each of the two C-terminal PICOT homology domains and suggests that simultaneous interaction via both domains increases the binding affinity. Furthermore, PICOT knock-down in Jurkat T cells resulted in a reduced histone H3 lysine 27 trimethylation (H3K27me3) at the PRC2 target gene, myelin transcription factor 1 (MYT1), suggesting that PICOT binding to EED alters PRC2-regulated transcriptional repression, and potentially contributes to the epigenetic regulation of chromatin silencing and remodeling.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Animales , Células COS , Proteínas Portadoras/análisis , Proteínas Portadoras/genética , Chlorocebus aethiops , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Células Jurkat , Metilación , Complejo Represivo Polycomb 2/análisis , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas
7.
Biochem Biophys Res Commun ; 488(3): 541-546, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28526413

RESUMEN

T cell antigen receptor (TCR) binding of a peptide antigen presented by antigen-presenting cells (APCs) in the context of surface MHC molecules initiates signaling events that regulate T cell activation, proliferation and differentiation. A key event in the activation process is the phosphorylation of the conserved tyrosine residues within the CD3 chain immunoreceptor tyrosine-based activation motifs (ITAMs), which operate as docking sites for SH2 domain-containing effector proteins. Phosphorylation of the CD3ζ ITAMs renders the CD3 chain capable of binding the ζ-chain associated protein 70 kDa (ZAP70), a protein tyrosine kinase that is essential for T cell activation. We found that TCR/CD3 crosslinking in Jurkat T cells promotes the association of Crk adaptor proteins with the transiently phosphorylated CD3ζ chain. Pull down assays using bead-immobilized GST fusion proteins revealed that the Crk-SH2 domain mediates binding of phospho-CD3ζ. Phospho-CD3ζ binding is selective and is mediated by the three types of Crk, including CrkI, CrkII, and CrkL, but not by other SH2 domain-containing adaptor proteins, such as Grb2, GRAP and Nck. Crk interaction with phospho-CD3ζ is rapid and transient, peaking 1 min post TCR/CD3 crosslinking. The results suggest the involvement of Crk adaptor proteins in the early stages of T cell activation in which Crk might help recruiting effector proteins to the vicinity of the phospho-CD3ζ and contribute to the fine-tuning of the TCR/CD3-coupled signal transduction pathways.


Asunto(s)
Proteínas Proto-Oncogénicas c-crk/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Proteína Tirosina Quinasa ZAP-70/química , Proteína Tirosina Quinasa ZAP-70/metabolismo , Sitios de Unión , Humanos , Fosfotirosina/metabolismo , Unión Proteica , Células Tumorales Cultivadas
8.
Fish Shellfish Immunol ; 68: 46-53, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28684322

RESUMEN

The marbled spinefoot rabbitfish (Siganus rivulatus) is an economically valuable fish species that has potential for commercial production in aquaculture. To overcome challenges in its sustainable production, a formulated diet is required for imparting health and robustness. This study evaluates the effect of dietary supplementation with arachidonic acid (ARA; 20:4n-6) on growth, survival, immune function and fatty acid composition of red blood cells (RBCs) in rabbitfish. We conducted two feeding trials using juvenile fish (to evaluate growth and survival) and adults (to evaluate immune function and fatty acid incorporation). Fish were fed diets supplemented with three different levels of ARA (in % of total fatty acids): 0.6 (unsupplemented control), 2.6 (moderate) and 4.7 (high). The fish fed with moderate ARA levels exhibited improved (p < 0.05) growth over the control and the high ARA level groups. During an outbreak of Streptococcus iniae, fish fed with moderate ARA survived significantly (p < 0.05) better (89%) than the control and the high ARA groups (59% and 48%, respectively). Moderate ARA supplementation resulted in elevated lysozyme and complement levels in the plasma of rabbitfish. A significant increase in the total serum immunoglobulin levels was observed in both the medium and the high ARA level groups; however, a decrease in antiprotease activity was recorded in the supplemented groups as compared to the control. Fatty acid analysis in fish red blood cells revealed a significant (p < 0.05) increase in the proportion of ARA of total fatty acids in the groups fed with the medium and the high ARA level diets (9.5% and 11.2%, respectively, compared to 7.1% in the control). Concomitantly, there was a decrease in the proportion of eicosapentaenoic acid (EPA; 20:5n-3), dihomo-γ linolenic acid (DGLA; 20:3n-6) and several 18-carbon unsaturated fatty acids in these groups. In conclusion, ARA in rabbitfish feeds improved growth, survival as well as innate and acquired humoral immune functions. Thus ARA supplementation in the diet of this species could be a valuable step towards establishing the commercial culture of rabbitfish.


Asunto(s)
Ácido Araquidónico , Suplementos Dietéticos , Inmunidad Innata , Perciformes/fisiología , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Eritrocitos/metabolismo , Ácidos Grasos/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Proteínas de Peces/metabolismo , Inmunoglobulinas/metabolismo , Muramidasa/metabolismo , Perciformes/crecimiento & desarrollo , Perciformes/inmunología , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Streptococcus iniae/fisiología
9.
Biochem Biophys Res Commun ; 470(2): 411-416, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26792730

RESUMEN

Members of the Crk family of adaptor proteins are key players in signal transduction from a variety of cell surface receptors. CrkI and CrkII are two alternative-spliced forms of a single gene which possess an N-terminal SH2 domain and an SH3 domain that mediate interaction with other proteins. CrkII possesses an additional C-terminal linker region plus an extra SH3 domain, which does not interact with other proteins, but operates as regulatory moiety. Utilizing human Jurkat T cells, we demonstrate that CrkII-SH3N binding of C3G is inhibited by cyclosporin A (CsA) plus FK506 that inhibit the cyclophilin A (CypA) and FK506 binding protein (FKBP) peptidyl-prolyl cis-trans isomerases (PPIases; also termed immunophilins), respectively. Jurkat T cells were found to express ∼ 5-fold lower levels of CrkI protein compared to CrkII, but the efficiency of C3G binding by CrkI was ∼ 5-fold higher than that of CrkII, suggesting that the majority of cellular CrkII proteins adopt a conformation that is inaccessible for C3G. Treatment of Jurkat T cells with CsA plus FK506 led to a time-dependent conformational change in overexpressed human CrkII1-236 protein-containing FRET-based biosensor, supporting the accumulation of cis conformers of human CrkII1-236 in the presence of PPIase inhibitors. Our data suggest that the Gly(219)-Pro-Tyr motif in the human CrkII linker region serves as the recognition and isomerization site of PPIases, and raise the possibility that CsA and FK506 might interfere with selected effector T cell functions via a CrkII-, but not CrkI-dependent mechanisms.


Asunto(s)
Ciclofilina A/metabolismo , Regulación de la Expresión Génica/fisiología , Inmunofilinas/metabolismo , Proteínas Proto-Oncogénicas c-crk/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Humanos , Células Jurkat , Transducción de Señal/fisiología
10.
J Immunol ; 193(8): 3966-77, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25225668

RESUMEN

Crk adaptor proteins are key players in signal transduction from a variety of cell surface receptors. CrkI and CrkII, the two alternative spliced forms of CRK, possess an N-terminal Src homology 2 domain, followed by a Src homology 3 (SH3) domain, whereas CrkII possesses in addition a C-terminal linker region plus a SH3 domain, which operate as regulatory moieties. In this study, we investigated the ability of immunophilins, which function as peptidyl-prolyl isomerases, to regulate Crk proteins in human T lymphocytes. We found that endogenous CrkII, but not CrkI, associates with the immunophilins, cyclophilin A, and 12-kDa FK506-binding protein, in resting human Jurkat T cells. In addition, cyclophilin A increased Crk SH3 domain-binding guanine-nucleotide releasing factor (C3G) binding to CrkII, whereas inhibitors of immunophilins, such as cyclosporine A (CsA) and FK506, inhibited CrkII, but not CrkI association with C3G. Expression in Jurkat T cells of phosphorylation indicator of Crk chimeric unit plasmid, a plasmid encoding the human CrkII1-236 sandwiched between cyan fluorescent protein and yellow fluorescent protein, demonstrated a basal level of fluorescence resonance energy transfer, which increased in response to cell treatment with CsA and FK506, reflecting increased trans-to-cis conversion of CrkII. Crk-C3G complexes are known to play an important role in integrin-mediated cell adhesion and migration. We found that overexpression of CrkI or CrkII increased adhesion and migration of Jurkat T cells. However, immunophilin inhibitors suppressed the ability of CrkII- but not CrkI-overexpressing cells to adhere to fibronectin-coated surfaces and migrate toward the stromal cell-derived factor 1α chemokine. The present data demonstrate that immunophilins regulate CrkII, but not CrkI activity in T cells and suggest that CsA and FK506 inhibit selected effector T cell functions via a CrkII-dependent mechanism.


Asunto(s)
Ciclofilina A/antagonistas & inhibidores , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Proteínas Proto-Oncogénicas c-crk/metabolismo , Linfocitos T/inmunología , Adhesión Celular/inmunología , Movimiento Celular/inmunología , Quimiocina CXCL12/inmunología , Ciclofilina A/metabolismo , Ciclosporina/farmacología , Humanos , Células Jurkat , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Plásmidos/genética , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Transducción de Señal/inmunología , Tacrolimus/farmacología , Dominios Homologos src/genética
11.
Biochem Soc Trans ; 42(6): 1484-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25399558

RESUMEN

Protein kinase Cθ (PKCθ) is a key enzyme in T-lymphocytes where it plays an important role in signal transduction downstream of the activated T-cell receptor (TCR) and the CD28 co-stimulatory receptor. Antigenic stimulation of T-cells triggers PKCθ translocation to the centre of the immunological synapse (IS) at the contact site between antigen-specific T-cells and antigen-presenting cells (APCs). The IS-residing PKCθ phosphorylates and activates effector molecules that transduce signals into distinct subcellular compartments and activate the transcription factors, nuclear factor κB (NF-κB), nuclear factor of activated T-cells (NFAT) and activating protein 1 (AP-1), which are essential for the induction of T-cell-mediated responses. Besides its major biological role in T-cells, PKCθ is expressed in several additional cell types and is involved in a variety of distinct physiological and pathological phenomena. For example, PKCθ is expressed at high levels in platelets where it regulates signal transduction from distinct surface receptors, and is required for optimal platelet activation and aggregation, as well as haemostasis. In addition, PKCθ is involved in physiological processes regulating insulin resistance and susceptibility to obesity, and is expressed at high levels in gastrointestinal stromal tumours (GISTs), although the functional importance of PKCθ in these processes and cell types is not fully clear. The present article briefly reviews selected topics relevant to the biological roles of PKCθ in health and disease.


Asunto(s)
Enfermedad , Isoenzimas/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal , Humanos , Isoenzimas/efectos de los fármacos , Isoenzimas/fisiología , Activación de Linfocitos/fisiología , Activación Plaquetaria/fisiología , Agregación Plaquetaria/fisiología , Proteína Quinasa C/efectos de los fármacos , Proteína Quinasa C/fisiología , Proteína Quinasa C-theta , Linfocitos T/inmunología
12.
Immunobiology ; 228(2): 152342, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36720192

RESUMEN

Crk adaptor proteins are key players in signal transduction from multiple cell surface receptors, including the T cell antigen receptor (TCR). The involvement of CrkII in the early stages of T cell activation is well documented, but little is known about its role during the termination of the activation response. We substantiated findings showing that CrkII utilizes its SH3N and SH2 domains to constitutively associate with C3G and transiently with Cbl in resting and TCR/CD3-stimulated T cells, respectively. Association of CrkII with Cbl peaks within 1 min post-TCR/CD3 stimulation, and involves the formation of multiple CrkII-containing complexes of different molecular mass. Ubiquitination of C3G commences at ∼5 min post TCR/CD3 stimulation concomitantly with its degradation. This entire process conversely correlates with the levels of expression of CrkII and is dependent on the presence of the CrkII-bound Cbl protein. The data suggest that CrkII functions as a scaffold that brings Cbl into close proximity with C3G in TCR/CD3-stimulated T cells and that tyrosine phosphorylation and activation of Cbl promotes C3G ubiquitination and degradation. We suggest that this mechanism contributes to the termination of the TCR/CD3-induced activation signal and helps tune the length and intensity of T cell-mediated immune responses.


Asunto(s)
Transducción de Señal , Linfocitos T , Linfocitos T/metabolismo , Transducción de Señal/fisiología , Receptores de Antígenos de Linfocitos T/metabolismo , Dominios Homologos src , Fosforilación , Ubiquitinación , Proteínas Proto-Oncogénicas c-cbl/metabolismo
13.
Front Immunol ; 14: 1126464, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969236

RESUMEN

Protein kinase C-θ (PKCθ) is a member of the novel PKC subfamily known for its selective and predominant expression in T lymphocytes where it regulates essential functions required for T cell activation and proliferation. Our previous studies provided a mechanistic explanation for the recruitment of PKCθ to the center of the immunological synapse (IS) by demonstrating that a proline-rich (PR) motif within the V3 region in the regulatory domain of PKCθ is necessary and sufficient for PKCθ IS localization and function. Herein, we highlight the importance of Thr335-Pro residue in the PR motif, the phosphorylation of which is key in the activation of PKCθ and its subsequent IS localization. We demonstrate that the phospho-Thr335-Pro motif serves as a putative binding site for the peptidyl-prolyl cis-trans isomerase (PPIase), Pin1, an enzyme that specifically recognizes peptide bonds at phospho-Ser/Thr-Pro motifs. Binding assays revealed that mutagenesis of PKCθ-Thr335-to-Ala abolished the ability of PKCθ to interact with Pin1, while Thr335 replacement by a Glu phosphomimetic, restored PKCθ binding to Pin1, suggesting that Pin1-PKCθ association is contingent upon the phosphorylation of the PKCθ-Thr335-Pro motif. Similarly, the Pin1 mutant, R17A, failed to associate with PKCθ, suggesting that the integrity of the Pin1 N-terminal WW domain is a requisite for Pin1-PKCθ interaction. In silico docking studies underpinned the role of critical residues in the Pin1-WW domain and the PKCθ phospho-Thr335-Pro motif, to form a stable interaction between Pin1 and PKCθ. Furthermore, TCR crosslinking in human Jurkat T cells and C57BL/6J mouse-derived splenic T cells promoted a rapid and transient formation of Pin1-PKCθ complexes, which followed a T cell activation-dependent temporal kinetic, suggesting a role for Pin1 in PKCθ-dependent early activation events in TCR-triggered T cells. PPIases that belong to other subfamilies, i.e., cyclophilin A or FK506-binding protein, failed to associate with PKCθ, indicating the specificity of the Pin1-PKCθ association. Fluorescent cell staining and imaging analyses demonstrated that TCR/CD3 triggering promotes the colocalization of PKCθ and Pin1 at the cell membrane. Furthermore, interaction of influenza hemagglutinin peptide (HA307-319)-specific T cells with antigen-fed antigen presenting cells (APCs) led to colocalization of PKCθ and Pin1 at the center of the IS. Together, we point to an uncovered function for the Thr335-Pro motif within the PKCθ-V3 regulatory domain to serve as a priming site for its activation upon phosphorylation and highlight its tenability to serve as a regulatory site for the Pin1 cis-trans isomerase.


Asunto(s)
Péptidos , Isomerasa de Peptidilprolil , Animales , Ratones , Humanos , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Proteína Quinasa C-theta/genética , Ratones Endogámicos C57BL , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Receptores de Antígenos de Linfocitos T , Prolina/química , Prolina/metabolismo
14.
Front Immunol ; 14: 1114582, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875093

RESUMEN

Adenosine monophosphate-activated protein kinase (AMPK) is a key metabolic sensor that is pivotal for the maintenance of cellular energy homeostasis. AMPK contributes to diverse metabolic and physiological effects besides its fundamental role in glucose and lipid metabolism. Aberrancy in AMPK signaling is one of the determining factors which lead to the development of chronic diseases such as obesity, inflammation, diabetes, and cancer. The activation of AMPK and its downstream signaling cascades orchestrate dynamic changes in the tumor cellular bioenergetics. It is well documented that AMPK possesses a suppressor role in the context of tumor development and progression by modulating the inflammatory and metabolic pathways. In addition, AMPK plays a central role in potentiating the phenotypic and functional reprogramming of various classes of immune cells which reside in the tumor microenvironment (TME). Furthermore, AMPK-mediated inflammatory responses facilitate the recruitment of certain types of immune cells to the TME, which impedes the development, progression, and metastasis of cancer. Thus, AMPK appears to play an important role in the regulation of anti-tumor immune response by regulating the metabolic plasticity of various immune cells. AMPK effectuates the metabolic modulation of anti-tumor immunity via nutrient regulation in the TME and by virtue of its molecular crosstalk with major immune checkpoints. Several studies including that from our lab emphasize on the role of AMPK in regulating the anticancer effects of several phytochemicals, which are potential anticancer drug candidates. The scope of this review encompasses the significance of the AMPK signaling in cancer metabolism and its influence on the key drivers of immune responses within the TME, with a special emphasis on the potential use of phytochemicals to target AMPK and combat cancer by modulating the tumor metabolism.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Neoplasias , Humanos , Microambiente Tumoral , Inmunomodulación , Inmunidad
15.
Life (Basel) ; 12(1)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35054506

RESUMEN

Reproduction in certain deep-sea anglerfishes involves the permanent attachment of dwarf males to much larger females and fusion of their tissues leading to the establishment of a shared circulatory system. This unusual phenomenon of sexual parasitism enables anglerfishes to maximize reproductive success in the vast and deep oceans, where females and males otherwise rarely meet. An even more surprising phenomenon relates to the observation that joining of genetically disparate male and female anglerfishes does not evoke a strong anti-graft immune rejection response, which occurs in vertebrates following allogeneic parabiosis. Recent studies demonstrated that the evolutionary processes that led to the unique mating strategy of anglerfishes coevolved with genetic changes that resulted in loss of functional genes encoding critical components of the adaptive immune system. These genetic alterations enabled anglerfishes to tolerate the histoincompatible tissue antigens of their mate and prevent the occurrence of reciprocal graft rejection responses. While the exact mechanisms by which anglerfishes defend themselves against pathogens have not yet been deciphered, it is speculated that during evolution, anglerfishes adopted new immune strategies that compensate for the loss of B and T lymphocyte functions and enable them to resist infection by pathogens.

16.
Sci Adv ; 8(24): eabn7662, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35704583

RESUMEN

Steroid nuclear receptor coactivator 2 (SRC2) is a member of a family of transcription coactivators. While SRC1 inhibits the differentiation of regulatory T cells (Tregs) critical for establishing immune tolerance, we show here that SRC2 stimulates Treg differentiation. SRC2 is dispensable for the development of thymic Tregs, whereas naive CD4+ T cells from mice deficient of SRC2 specific in Tregs (SRC2fl/fl/Foxp3YFP-Cre) display defective Treg differentiation. Furthermore, the aged SRC2fl/fl/Foxp3YFP-Cre mice spontaneously develop autoimmune phenotypes including enlarged spleen and lung inflammation infiltrated with IFNγ-producing CD4+ T cells. SRC2fl/fl/Foxp3YFP-Cre mice also develop severer experimental autoimmune encephalomyelitis (EAE) due to reduced Tregs. Mechanically, SRC2 recruited by NFAT1 binds to the promoter and activates the expression of Nr4a2, which then stimulates Foxp3 expression to promote Treg differentiation. Members of SRC family coactivators thus play distinct roles in Treg differentiation and are potential drug targets for controlling immune tolerance.

17.
Sci Adv ; 8(42): eadc9221, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36269826

RESUMEN

RORγt is known to instruct the differentiation of T helper 17 (TH17) cells that mediate the pathogenesis of autoimmune diseases. However, it remains unknown whether RORγt plays a distinct role in the differentiation and effector function of TH17 cells. Here, we show that mutation of RORγt lysine-256, a ubiquitination site, to arginine (K256R) separates the RORγt role in these two functions. Preventing ubiquitination at K256 via arginine substitution does not affect RORγt-dependent thymocyte development, and TH17 differentiation in vitro and in vivo, however, greatly impaired the pathogenesis of TH17 cell-mediated experimental autoimmune encephalomyelitis (EAE). Mechanistically, K256R mutation impairs RORγt to bind to and activate Runx1 expression critical for TH17-mediated EAE. Thus, RORγt regulates the effector function of TH17 cells in addition to TH17 differentiation. This work informs the development of RORγt-based therapies that specifically target the effector function of TH17 cells responsible for autoimmunity.

18.
Front Oncol ; 12: 812598, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35211405

RESUMEN

Our previous study has demonstrated that Uttroside B (Utt-B), a saponin isolated from the leaves of Solanum nigrum Linn induces apoptosis in hepatic cancer cells and exhibits a remarkable growth inhibition of Hepatocellular Carcinoma (HCC). Our innovation has been granted a patent from the US (US 2019/0160088A1), Canada (3,026,426.), Japan (JP2019520425) and South Korea (KR1020190008323) and the technology have been transferred commercially to Q Biomed, a leading US-based Biotech company. Recently, the compound received approval as 'Orphan Drug' against HCC from US FDA, which reveals the clinical relevance of evaluating its antitumor efficacy against HCC. In the present study, we report that Utt-B promotes pro-survival autophagy in hepatic cancer cells as evidenced by the increased expression of autophagy-related proteins, including LC3-II, Beclin1, ATG 5, and ATG 7, as well as a rise in the autophagic flux. Hence, we investigated whether Utt-B-induced autophagic response is complementing or contradicting its apoptotic program in HCC. Inhibition of autophagy using the pharmacological inhibitors, Bafilomycin A1(Baf A1), and 3-methyl adenine (3-MA), and the biological inhibitor, Beclin1 siRNA, significantly enhances the apoptosis of hepatic cancer cells and hence the cytotoxicity induced by Utt-B. We also found increased expression of autophagy markers in Utt-B-treated xenografts derived from HCC. We further analyzed whether the antimalarial drug, Chloroquine (Cqn), a well-known autophagy inhibitor, can enhance the anticancer effect of Utt-B against HCC. We found that inhibition of autophagy using Cqn significantly enhances the antitumor efficacy of Utt-B in vitro and in vivo, in NOD SCID mice bearing HCC xenografts. Taken together, our results suggest that the antitumor effect of Utt-B against HCC can be further enhanced by blocking autophagy. Furthermore, Utt-B in combination with Cqn, a clinically approved drug, if repurposed and used in a combinatorial regimen with Utt-B, can further improve the therapeutic efficacy of Utt-B against HCC.

20.
Pharmaceuticals (Basel) ; 15(5)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35631464

RESUMEN

We previously reported the remarkable potency of uttroside B (Utt-B), saponin-isolated and characterized in our lab from Solanum nigrum Linn, against HCC. Recently, the U.S. FDA approved Utt-B as an 'orphan drug' against HCC. The current study validates the superior anti-HCC efficacy of Utt-B over sorafenib, the first-line treatment option against HCC. The therapeutic efficacies of Utt-B vs. sorafenib against HCC were compared in vitro, using various liver cancer cell lines and in vivo, utilizing NOD.CB17-Prkdcscid/J mice bearing human HCC xenografts. Our data indicate that Utt-B holds an augmented anti-HCC efficacy over sorafenib. Our previous report demonstrated the pharmacological safety of Utt-B in Chang Liver, the normal immortalized hepatocytes, and in the acute and chronic toxicity murine models even at elevated Utt-B concentrations. Here, we show that higher concentrations of sorafenib induce severe toxicity, in Chang Liver, as well as in acute and chronic in vivo models, indicating that, apart from the superior therapeutic benefit over sorafenib, Utt-B is a pharmacologically safer molecule, and the drug-induced undesirable effects can, thus, be substantially alleviated in the context of HCC chemotherapy. Clinical studies in HCC patients utilizing Utt-B, is a contiguous key step to promote this drug to the clinic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA